Theory of Everything in the context of "Gravity on Earth"

Play Trivia Questions online!

or

Skip to study material about Theory of Everything in the context of "Gravity on Earth"

Ad spacer

⭐ Core Definition: Theory of Everything

A theory of everything (TOE) or final theory is a hypothetical coherent theoretical framework of physics containing all physical principles. The scope of the concept of a "theory of everything" varies. The original technical concept referred to unification of the four fundamental interactions: electromagnetism, strong and weak nuclear forces, and gravity.Finding such a theory of everything is one of the major unsolved problems in physics. Numerous popular books apply the words "theory of everything" to more expansive concepts such as predicting everything in the universe from logic alone, complete with discussions on how this is not possible.

Starting with Isaac Newton's unification of terrestrial gravity, responsible for weight, with celestial gravity, responsible for planetary orbits, concepts in fundamental physics have been successively unified. The phenomena of electricity and magnetism were combined by James Clerk Maxwell's theory of electromagnetism and Albert Einstein's theory of relativity explained how they are connected. By the 1930s, Paul Dirac combined relativity and quantum mechanics and, working with other physicists, developed quantum electrodynamics that combines quantum mechanics and electromagnetism.Work on nuclear and particle physics lead to the discovery of the strong nuclear and weak nuclear forces which were combined in the quantum field theory to implemented the Standard Model of physics, a unification of all forces except gravity. The lone fundamental force not built into the Standard Model is gravity. General relativity provides a theoretical framework for understanding gravity across scales from the laboratory to planets to the complete universe, but it has not been successfully unified with quantum mechanics.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Theory of Everything in the context of Physics beyond the Standard Model

Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the Standard Model, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as spacetime singularities like the Big Bang and black hole event horizons.

Theories that lie beyond the Standard Model include various extensions of the standard model through supersymmetry, such as the Minimal Supersymmetric Standard Model (MSSM) and Next-to-Minimal Supersymmetric Standard Model (NMSSM), and entirely novel explanations, such as string theory, M-theory, and extra dimensions. As these theories tend to reproduce the entirety of current phenomena, the question of which theory is the right one, or at least the "best step" towards a Theory of Everything, can only be settled via experiments, and is one of the most active areas of research in both theoretical and experimental physics.

↑ Return to Menu

Theory of Everything in the context of Unified field theory

In physics, a Unified Field Theory (UFT) is a type of field theory that allows all fundamental forces of nature, including gravity, and all elementary particles to be written in terms of a single physical field. According to quantum field theory, particles are themselves the quanta of fields. Different fields in physics include vector fields such as the electromagnetic field, spinor fields whose quanta are fermionic particles such as electrons, and tensor fields such as the metric tensor field that describes the shape of spacetime and gives rise to gravitation in general relativity. Unified field theories attempt to organize these fields into a single mathematical structure.

For over a century, the unified field theory has remained an open line of research. The term was coined by Albert Einstein, who attempted to unify his general theory of relativity with electromagnetism. Einstein attempted to create a classical unified field theory. Among other difficulties, this required a new explanation of particles as singularities or solitons instead of field quanta. Later attempts to unify general relativity with other forces incorporate quantum mechanics. The concept of a "Theory of Everything" or Grand Unified Theory are closely related to unified field theory. A theory of everything attempts to create a complete picture of all events in nature. Grand Unified Theories do not attempt to include the gravitational force and can therefore operate entirely within quantum field theory. The goal of a unified field theory has led to significant progress in theoretical physics.

↑ Return to Menu