Theoretical physics in the context of Theory


Theoretical physics in the context of Theory

Theoretical physics Study page number 1 of 6

Play TriviaQuestions Online!

or

Skip to study material about Theoretical physics in the context of "Theory"


⭐ Core Definition: Theoretical physics

Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain, and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena.

The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations. For example, while developing special relativity, Albert Einstein was concerned with the Lorentz transformation which left Maxwell's equations invariant, but was apparently uninterested in the Michelson–Morley experiment on Earth's drift through a luminiferous aether. Conversely, Einstein was awarded the Nobel Prize for explaining the photoelectric effect, previously an experimental result lacking a theoretical formulation.

↓ Menu
HINT:

In this Dossier

Theoretical physics in the context of Physicist

A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. Physicists generally are interested in the root or ultimate causes of phenomena, and usually frame their understanding in mathematical terms. They work across a wide range of research fields, spanning all length scales: from sub-atomic and particle physics, through biological physics, to cosmological length scales encompassing the universe as a whole. The field generally includes two types of physicists: experimental physicists who specialize in the observation of natural phenomena and the development and analysis of experiments, and theoretical physicists who specialize in mathematical modeling of physical systems to rationalize, explain and predict natural phenomena.

Physicists can apply their knowledge towards solving practical problems or to developing new technologies (also known as applied physics or engineering physics).

View the full Wikipedia page for Physicist
↑ Return to Menu

Theoretical physics in the context of Philosophy of physics

In philosophy, the philosophy of physics deals with conceptual and interpretational issues in physics, many of which overlap with research done by certain kinds of theoretical physicists. Historically, philosophers of physics have engaged with questions such as the nature of space, time, matter and the laws that govern their interactions, as well as the epistemological and ontological basis of the theories used by practicing physicists. The discipline draws upon insights from various areas of philosophy, including metaphysics, epistemology, and philosophy of science, while also engaging with the latest developments in theoretical and experimental physics.

Contemporary work focuses on issues at the foundations of the three pillars of modern physics:

View the full Wikipedia page for Philosophy of physics
↑ Return to Menu

Theoretical physics in the context of Cosmic inflation

In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe. Following the inflationary period, the universe continued to expand, but at a slower rate. The re-acceleration of this slowing expansion due to dark energy began after the universe was already over 7.7 billion years old (5.4 billion years ago).

Inflation theory was developed in the late 1970s and early 1980s, with notable contributions by several theoretical physicists, including Alexei Starobinsky at Landau Institute for Theoretical Physics, Alan Guth at Cornell University, and Andrei Linde at Lebedev Physical Institute. Starobinsky, Guth, and Linde won the 2014 Kavli Prize "for pioneering the theory of cosmic inflation". It was developed further in the early 1980s. It explains the origin of the large-scale structure of the cosmos. Quantum fluctuations in the microscopic inflationary region, magnified to cosmic size, become the seeds for the growth of structure in the Universe (see galaxy formation and evolution and structure formation). Many physicists also believe that inflation explains why the universe appears to be the same in all directions (isotropic), why the cosmic microwave background radiation is distributed evenly, why the universe is flat, and why no magnetic monopoles have been observed.

View the full Wikipedia page for Cosmic inflation
↑ Return to Menu

Theoretical physics in the context of Theory of relativity

The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to the forces of nature. It applies to the cosmological and astrophysical realm, including astronomy.

The theory transformed theoretical physics and astronomy during the 20th century, superseding a 200-year-old theory of mechanics created primarily by Isaac Newton. It introduced concepts including 4-dimensional spacetime as a unified entity of space and time, relativity of simultaneity, kinematic and gravitational time dilation, and length contraction. In the field of physics, relativity improved the science of elementary particles and their fundamental interactions, along with ushering in the nuclear age. With relativity, cosmology and astrophysics predicted extraordinary astronomical phenomena such as neutron stars, black holes, and gravitational waves.

View the full Wikipedia page for Theory of relativity
↑ Return to Menu

Theoretical physics in the context of Condensed matter physics

Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases, that arise from electromagnetic forces between atoms and electrons. More generally, the subject deals with condensed phases of matter: systems of many constituents with strong interactions among them. More exotic condensed phases include the superconducting phase exhibited by certain materials at extremely low cryogenic temperatures, the ferromagnetic and antiferromagnetic phases of spins on crystal lattices of atoms, the Bose–Einstein condensates found in ultracold atomic systems, and liquid crystals. Condensed matter physicists seek to understand the behavior of these phases by experiments to measure various material properties, and by applying the physical laws of quantum mechanics, electromagnetism, statistical mechanics, and other physics theories to develop mathematical models and predict the properties of extremely large groups of atoms.

The diversity of systems and phenomena available for study makes condensed matter physics the most active field of contemporary physics: one third of all American physicists self-identify as condensed matter physicists, and the Division of Condensed Matter Physics is the largest division of the American Physical Society. These include solid state and soft matter physicists, who study quantum and non-quantum physical properties of matter respectively. Both types study a great range of materials, providing many research, funding and employment opportunities. The field overlaps with chemistry, materials science, engineering and nanotechnology, and relates closely to atomic physics and biophysics. The theoretical physics of condensed matter shares important concepts and methods with that of particle physics and nuclear physics.

View the full Wikipedia page for Condensed matter physics
↑ Return to Menu

Theoretical physics in the context of Classical mechanics

In physics, classical mechanics is a theory that describes the effect of forces on the motion of macroscopic objects and bulk matter, without considering quantum effects, and often without incorporating relativistic effects either.

It is used in describing the motion of objects such as projectiles, parts of machinery, spacecraft, planets, stars, galaxies, deformable solids, fluids, macromolecules and other objects. The development of classical mechanics involved substantial change in the methods and philosophy of physics. The qualifier classical distinguishes this type of mechanics from new methods developed after the revolutions in physics of the early 20th century which revealed limitations in classical mechanics. Some modern sources include relativistic mechanics in classical mechanics, as representing the subject matter in its most developed and accurate form.

View the full Wikipedia page for Classical mechanics
↑ Return to Menu

Theoretical physics in the context of Treatise on Light

Treatise on Light: In Which Are Explained the Causes of That Which Occurs in Reflection & Refraction (French: Traité de la Lumière: Où sont expliquées les causes de ce qui luy arrive dans la reflexion & dans la refraction) is a book written by Dutch polymath Christiaan Huygens that was published in French in 1690. The book describes Huygens's conception of the nature of light propagation which makes it possible to explain the laws of geometrical optics shown in Descartes's La Dioptrique, which Huygens aimed to replace.

Unlike Newton's corpuscular theory, which was presented in the Opticks, Huygens conceived of light as an irregular series of shock waves which proceeds with very great, but finite, velocity through the ether, similar to sound waves. Moreover, he proposed that each point of a wavefront is itself the origin of a secondary spherical wave, a principle known today as the Huygens–Fresnel principle. The book is considered a pioneering work of theoretical and mathematical physics and the first mechanistic account of an unobservable physical phenomenon.

View the full Wikipedia page for Treatise on Light
↑ Return to Menu

Theoretical physics in the context of Edsger Dijkstra

Edsger Wybe Dijkstra (/ˈdkstrə/ DYKE-strə; Dutch: [ˈɛtsxər ˈʋibə ˈdɛikstraː] ; 11 May 1930 – 6 August 2002) was a Dutch computer scientist, programmer, mathematician, and science essayist.

Born in Rotterdam in the Netherlands, Dijkstra studied mathematics and physics and then theoretical physics at the University of Leiden. Adriaan van Wijngaarden offered him a job as the first computer programmer in the Netherlands at the Mathematical Centre in Amsterdam, where he worked from 1952 until 1962. He formulated and solved the shortest path problem in 1956, and in 1960 developed the first compiler for the programming language ALGOL 60 in conjunction with colleague Jaap A. Zonneveld. In 1962 he moved to Eindhoven, and later to Nuenen, where he became a professor in the Mathematics Department at the Technische Hogeschool Eindhoven. In the late 1960s he built the THE multiprogramming system, which influenced the designs of subsequent systems through its use of software-based paged virtual memory. Dijkstra joined Burroughs Corporation as its sole research fellow in August 1973. The Burroughs years saw him at his most prolific in output of research articles. He wrote nearly 500 documents in the "EWD" series, most of them technical reports, for private circulation within a select group.

View the full Wikipedia page for Edsger Dijkstra
↑ Return to Menu

Theoretical physics in the context of Mathematical science

The Mathematical Sciences are a group of areas of study that includes, in addition to mathematics, those academic disciplines that are primarily mathematical in nature but may not be universally considered subfields of mathematics proper.

Statistics, for example, is mathematical in its methods but grew out of bureaucratic and scientific observations, which merged with inverse probability and then grew through applications in some areas of physics, biometrics, and the social sciences to become its own separate, though closely allied, field. Theoretical astronomy, theoretical physics, theoretical and applied mechanics, continuum mechanics, mathematical chemistry, actuarial science, computer science, computational science, data science, operations research, quantitative biology, control theory, econometrics, geophysics and mathematical geosciences are likewise other fields often considered part of the mathematical sciences.

View the full Wikipedia page for Mathematical science
↑ Return to Menu

Theoretical physics in the context of Quantum chromodynamics

In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group SU(3). The QCD analog of electric charge is a property called color. Gluons are the force carriers of the theory, just as photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of particle physics. A large body of experimental evidence for QCD has been gathered over the years.

View the full Wikipedia page for Quantum chromodynamics
↑ Return to Menu

Theoretical physics in the context of Twistor theory

In theoretical physics, twistor theory was proposed by Roger Penrose in 1967 as a possible path to quantum gravity and has evolved into a widely studied branch of theoretical and mathematical physics. Penrose's idea was that twistor space should be the basic arena for physics from which space-time itself should emerge. It has led to powerful mathematical tools that have applications to differential and integral geometry, nonlinear differential equations and representation theory, and in physics to general relativity, quantum field theory, and the theory of scattering amplitudes.

Twistor theory arose in the context of the rapidly expanding mathematical developments in Einstein's theory of general relativity in the late 1950s and in the 1960s and carries a number of influences from that period. In particular, Roger Penrose has credited Ivor Robinson as an important early influence in the development of twistor theory, through his construction of so-called Robinson congruences.

View the full Wikipedia page for Twistor theory
↑ Return to Menu

Theoretical physics in the context of Analytical mechanics

In theoretical physics and mathematical physics, analytical mechanics, or theoretical mechanics is a collection of closely related formulations of classical mechanics. Analytical mechanics uses scalar properties of motion representing the system as a whole—usually its kinetic energy and potential energy. The equations of motion are derived from the scalar quantity by some underlying principle about the scalar's variation.

Analytical mechanics was developed by many scientists and mathematicians during the 18th century and onward, after Newtonian mechanics. Newtonian mechanics considers vector quantities of motion, particularly accelerations, momenta, forces, of the constituents of the system; it can also be called vectorial mechanics. A scalar is a quantity, whereas a vector is represented by quantity and direction. The results of these two different approaches are equivalent, but the analytical mechanics approach has many advantages for complex problems.

View the full Wikipedia page for Analytical mechanics
↑ Return to Menu

Theoretical physics in the context of Herbert Kroemer

Herbert Kroemer (German: [ˈhɛʁbɛʁt ˈkʁøːmɐ] ; August 25, 1928 – March 8, 2024) was a German-American physicist who, along with Zhores Alferov, received the Nobel Prize in Physics in 2000 for "developing semiconductor heterostructures used in high-speed- and opto-electronics". Kroemer was professor emeritus of electrical and computer engineering at the University of California, Santa Barbara, having received his Ph.D. in theoretical physics in 1952 from the University of Göttingen, Germany, with a dissertation on hot electron effects in the then-new transistor. His research into transistors was a stepping stone to the later development of mobile phone technologies.

View the full Wikipedia page for Herbert Kroemer
↑ Return to Menu

Theoretical physics in the context of Alexei Starobinsky

Alexei Alexandrovich Starobinsky (Russian: Алексе́й Алекса́ндрович Староби́нский; 19 April 1948 – 21 December 2023) was a Soviet and Russian theoretical physicist and cosmologist. He was a pioneer of the theory of cosmic inflation, for which he received the 2014 Kavli Prize in Astrophysics together with Alan Guth and Andrei Linde.

Born in Moscow, Starobinsky obtained a degree in physics from Moscow State University in 1972 and a doctorate in theoretical and mathematical physics from the Landau Institute for Theoretical Physics in 1975, the latter under the supervision of Yakov Zeldovich. Starobinsky remained at the Landau Institute, becoming its principal research scientist in 1997 and holding this position until his death.

View the full Wikipedia page for Alexei Starobinsky
↑ Return to Menu

Theoretical physics in the context of Andrei Linde

Andrei Dmitriyevich Linde (Russian: Андре́й Дми́триевич Ли́нде; born March 2, 1948) is a Russian-American theoretical physicist and the Harald Trap Friis Professor of Physics at Stanford University.

Linde is one of the main authors of the inflationary universe theory, as well as the theory of eternal inflation and inflationary multiverse. He received his Bachelor of Science degree from Moscow State University. In 1975, Linde was awarded a PhD from the Lebedev Physical Institute in Moscow. He worked at CERN (European Organization for Nuclear Research) since 1989 and moved to the United States in 1990, where he became professor of physics at Stanford University. Among the various awards he has received for his work on inflation, in 2002 he was awarded the Dirac Medal, along with Alan Guth of MIT and Paul Steinhardt of Princeton University. In 2004 he received, along with Alan Guth, the Gruber Prize in Cosmology for the development of inflationary cosmology. In 2012 he, along with Alan Guth, was an inaugural awardee of the Breakthrough Prize in Fundamental Physics. In 2014 he received the Kavli Prize in Astrophysics "for pioneering the theory of cosmic inflation", together with Alan Guth and Alexei Starobinsky. In 2018 he received the Gamow Prize.

View the full Wikipedia page for Andrei Linde
↑ Return to Menu

Theoretical physics in the context of Fine-tuning (physics)

In theoretical physics, fine-tuning is the process in which parameters of a model must be adjusted very precisely in order to fit with certain observations.

Theories requiring fine-tuning are regarded as problematic in the absence of a known mechanism to explain why the parameters happen to have precisely the observed values that they return. The heuristic rule that parameters in a fundamental physical theory should not be too fine-tuned is called naturalness.

View the full Wikipedia page for Fine-tuning (physics)
↑ Return to Menu

Theoretical physics in the context of Quantum field theory

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines field theory, special relativity and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on QFT.

View the full Wikipedia page for Quantum field theory
↑ Return to Menu