Quantum electrodynamics in the context of "Quantum chromodynamics"

Play Trivia Questions online!

or

Skip to study material about Quantum electrodynamics in the context of "Quantum chromodynamics"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Quantum electrodynamics in the context of Quantum chromodynamics

In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group SU(3). The QCD analog of electric charge is a property called color. Gluons are the force carriers of the theory, just as photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of particle physics. A large body of experimental evidence for QCD has been gathered over the years.

↓ Explore More Topics
In this Dossier

Quantum electrodynamics in the context of Quantum

In physics, a quantum (pl.: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This means that the magnitude of the physical property can take on only discrete values consisting of integer multiples of one quantum. For example, a photon is a single quantum of light of a specific frequency (or of any other form of electromagnetic radiation). Similarly, the energy of an electron bound within an atom is quantized and can exist only in certain discrete values. Atoms and matter in general are stable because electrons can exist only at discrete energy levels within an atom. Quantization is one of the foundations of the much broader physics of quantum mechanics. Quantization of energy and its influence on how energy and matter interact (quantum electrodynamics) is part of the fundamental framework for understanding and describing nature.

↑ Return to Menu

Quantum electrodynamics in the context of Classical electrodynamics

Classical electromagnetism or classical electrodynamics is a branch of physics focused on the study of interactions between electric charges and currents using an extension of the classical Newtonian model. It is, therefore, a classical field theory. The theory provides a description of electromagnetic phenomena whenever the relevant length scales and field strengths are large enough that quantum mechanical effects are negligible. For small distances and low field strengths, such interactions are better described by quantum electrodynamics which is a quantum field theory.

↑ Return to Menu

Quantum electrodynamics in the context of Paul Dirac

Paul Adrien Maurice Dirac (/dɪˈræk/ dih-RAK; 8 August 1902 – 20 October 1984) was a British theoretical physicist who is considered to be one of the founders of quantum mechanics. Dirac laid the foundations for both quantum electrodynamics and quantum field theory. He was the Lucasian Professor of Mathematics at the University of Cambridge from 1932 to 1969, and a professor of physics at Florida State University from 1970 to 1984. Dirac shared the 1933 Nobel Prize in Physics with Erwin Schrödinger "for the discovery of new productive forms of atomic theory."

Dirac graduated from the University of Bristol with a First Class Honours Bachelor of Science degree in electrical engineering in 1921, and a first class honours Bachelor of Arts degree in mathematics in 1923. Dirac then graduated from St John's College, Cambridge, with a Ph.D. in Physics in 1926, writing the first ever thesis on quantum mechanics.

↑ Return to Menu

Quantum electrodynamics in the context of Vacuum energy

Vacuum energy is an underlying background energy that exists in space throughout the entire universe. The vacuum energy is a special case of zero-point energy that relates to the quantum vacuum.

The effects of vacuum energy can be experimentally observed in various phenomena such as spontaneous emission, the Casimir effect, and the Lamb shift, and are thought to influence the behavior of the Universe on cosmological scales. Using the upper limit of the cosmological constant, the vacuum energy of free space has been estimated to be 10 joules (10 ergs), or ~5 GeV per cubic meter. However, in quantum electrodynamics, consistency with the principle of Lorentz covariance and with the magnitude of the Planck constant suggests a much larger value of 10 joules per cubic meter. This huge discrepancy is known as the cosmological constant problem or, colloquially, the "vacuum catastrophe."

↑ Return to Menu

Quantum electrodynamics in the context of Gluons

A gluon (/ˈɡlɒn/ GLOO-on) is a type of massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a spin of 1. Through the strong interaction, gluons bind quarks into groups according to quantum chromodynamics (QCD), forming hadrons such as protons and neutrons.

Gluons carry the color charge of the strong interaction, thereby participating in the strong interaction as well as mediating it. Because gluons carry the color charge, QCD is more difficult to analyze compared to quantum electrodynamics (QED) where the photon carries no electric charge.

↑ Return to Menu

Quantum electrodynamics in the context of Theory of everything

A theory of everything (TOE) or final theory is a hypothetical coherent theoretical framework of physics containing all physical principles. The scope of the concept of a "theory of everything" varies. The original technical concept referred to unification of the four fundamental interactions: electromagnetism, strong and weak nuclear forces, and gravity.Finding such a theory of everything is one of the major unsolved problems in physics. Numerous popular books apply the words "theory of everything" to more expansive concepts such as predicting everything in the universe from logic alone, complete with discussions on how this is not possible.

Starting with Isaac Newton's unification of terrestrial gravity, responsible for weight, with celestial gravity, responsible for planetary orbits, concepts in fundamental physics have been successively unified. The phenomena of electricity and magnetism were combined by James Clerk Maxwell's theory of electromagnetism and Albert Einstein's theory of relativity explained how they are connected. By the 1930s, Paul Dirac combined relativity and quantum mechanics and, working with other physicists, developed quantum electrodynamics that combines quantum mechanics and electromagnetism.Work on nuclear and particle physics lead to the discovery of the strong nuclear and weak nuclear forces which were combined in the quantum field theory to implemented the Standard Model of physics, a unification of all forces except gravity. The lone fundamental force not built into the Standard Model is gravity. General relativity provides a theoretical framework for understanding gravity across scales from the laboratory to planets to the complete universe, but it has not been successfully unified with quantum mechanics.

↑ Return to Menu

Quantum electrodynamics in the context of Lev Landau

Lev Davidovich Landau (Russian: Лев Дави́дович Ланда́у; 22 January 1908 – 1 April 1968) was a Soviet physicist who made fundamental contributions to many areas of theoretical physics. He was considered as one of the last scientists who were universally well-versed and made seminal contributions to all branches of physics. He is credited with laying the foundations of twentieth century condensed matter physics, and is also considered arguably the greatest Soviet theoretical physicist.

His accomplishments include the independent co-discovery of the density matrix method in quantum mechanics (alongside John von Neumann), the quantum mechanical theory of diamagnetism, the theory of superfluidity, the theory of second-order phase transitions, invention of order parameter technique, the Ginzburg–Landau theory of superconductivity, the theory of Fermi liquids, the explanation of Landau damping in plasma physics, the Landau pole in quantum electrodynamics, the two-component theory of neutrinos, and Landau's equations for S-matrix singularities. He received the 1962 Nobel Prize in Physics for his development of a mathematical theory of superfluidity that accounts for the properties of liquid helium II at a temperature below 2.17 K (−270.98 °C).

↑ Return to Menu