The Mathematical Theory of Communication in the context of "Noisy channel coding theorem"

Play Trivia Questions online!

or

Skip to study material about The Mathematical Theory of Communication in the context of "Noisy channel coding theorem"

Ad spacer

⭐ Core Definition: The Mathematical Theory of Communication

"A Mathematical Theory of Communication" is an article by mathematician Claude Shannon published in Bell System Technical Journal in 1948. It was renamed The Mathematical Theory of Communication in the 1949 book of the same name, a small but significant title change after realizing the generality of this work. It has tens of thousands of citations, being one of the most influential and cited scientific papers of all time, as it gave rise to the field of information theory, with Scientific American referring to the paper as the "Magna Carta of the Information Age", while the electrical engineer Robert G. Gallager called the paper a "blueprint for the digital era". Historian James Gleick rated the paper as the most important development of 1948, placing the transistor second in the same time period, with Gleick emphasizing that the paper by Shannon was "even more profound and more fundamental" than the transistor.

It is also noted that "as did relativity and quantum theory, information theory radically changed the way scientists look at the universe". The paper also formally introduced the term "bit" and serves as its theoretical foundation.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 The Mathematical Theory of Communication in the context of Noisy channel coding theorem

In information theory, the noisy-channel coding theorem (sometimes Shannon's theorem or Shannon's limit), establishes that for any given degree of noise contamination of a communication channel, it is possible (in theory) to communicate discrete data (digital information) nearly error-free up to a computable maximum rate through the channel. This result was presented by Claude Shannon in 1948 and was based in part on earlier work and ideas of Harry Nyquist and Ralph Hartley.

The Shannon limit or Shannon capacity of a communication channel refers to the maximum rate of error-free data that can theoretically be transferred over the channel if the link is subject to random data transmission errors, for a particular noise level. It was first described by Shannon (1948), and shortly after published in a book by Shannon and Warren Weaver entitled The Mathematical Theory of Communication (1949). This founded the modern discipline of information theory.

↓ Explore More Topics
In this Dossier