Testis in the context of 3β-hydroxysteroid dehydrogenase


Testis in the context of 3β-hydroxysteroid dehydrogenase

Testis Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Testis in the context of "3β-hydroxysteroid dehydrogenase"


⭐ Core Definition: Testis

A testicle, also called testis (pl. testes) is the male gonad in all gonochoric animals, including humans, and is homologous to the ovary, which is the female gonad. Its primary functions are the production of sperm and the secretion of androgens, primarily testosterone.

The release of testosterone is regulated by luteinizing hormone (LH) from the anterior pituitary gland. Sperm production is controlled by follicle-stimulating hormone (FSH) from the anterior pituitary gland and by testosterone produced within the gonads.

↓ Menu
HINT:

👉 Testis in the context of 3β-hydroxysteroid dehydrogenase

3β-Hydroxysteroid dehydrogenase/Δ isomerase (3β-HSD) (EC 1.1.1.145) is an enzyme that catalyzes the biosynthesis of the steroid progesterone from pregnenolone, 17α-hydroxyprogesterone from 17α-hydroxypregnenolone, and androstenedione from dehydroepiandrosterone (DHEA) in the adrenal gland. It is the only enzyme in the adrenal pathway of corticosteroid synthesis that is not a member of the cytochrome P450 family. It is also present in other steroid-producing tissues, including the ovary, testis and placenta. In humans, there are two 3β-HSD isozymes encoded by the HSD3B1 and HSD3B2 genes.

3β-HSD is also known as delta Δ-isomerase, which catalyzes the oxidative conversion of Δ-3β-hydroxysteroids to the Δ-3-keto configuration and is, therefore, essential for the biosynthesis of all classes of hormonal steroids, namely progesterone, glucocorticoids, mineralocorticoids, androgens, and estrogens.

↓ Explore More Topics
In this Dossier

Testis in the context of Endocrine system

The endocrine system is a messenger system in an organism comprising feedback loops of hormones that are released by internal glands directly into the circulatory system and that target and regulate distant organs. In vertebrates, the hypothalamus is the neural control center for all endocrine systems.

In humans, the major endocrine glands are the thyroid, parathyroid, pituitary, pineal, and adrenal glands, and the (male) testis and (female) ovaries. The hypothalamus, pancreas, and thymus also function as endocrine glands, among other functions. (The hypothalamus and pituitary glands are organs of the neuroendocrine system. One of the most important functions of the hypothalamus—it is located in the brain adjacent to the pituitary gland—is to link the endocrine system to the nervous system via the pituitary gland.) Other organs, such as the kidneys, also have roles within the endocrine system by secreting certain hormones. The study of the endocrine system and its disorders is known as endocrinology.The thyroid secretes thyroxine, the pituitary secretes growth hormone, the pineal secretes melatonin, the testis secretes testosterone, and the ovaries secrete estrogen and progesterone.

View the full Wikipedia page for Endocrine system
↑ Return to Menu

Testis in the context of SRY

Sex-determining region Y protein (SRY), or testis-determining factor (TDF), is a DNA-binding protein (also known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in therian mammals (placentals and marsupials). SRY is an intronless sex-determining gene on the Y chromosome. Mutations in this gene lead to a range of disorders of sex development with varying effects on an individual's phenotype and genotype.

SRY is a member of the SOX (SRY-like box) gene family of DNA-binding proteins. When complexed with the steroidogenic factor 1 (SF-1) protein, SRY acts as a transcription factor that causes upregulation of other transcription factors, most importantly SOX9. Its expression causes the development of primary sex cords, which later develop into seminiferous tubules. These cords form in the central part of the yet-undifferentiated gonad, turning it into a testis. The now-induced Leydig cells of the testis then start secreting testosterone, while the Sertoli cells produce anti-Müllerian hormone. Effects of the SRY gene, which normally take place 6–8 weeks after fetus formation, inhibit the growth of female anatomical structure in males. The gene also contributes towards developing the secondary sexual characteristics of males.

View the full Wikipedia page for SRY
↑ Return to Menu

Testis in the context of Ovotesticular syndrome

Ovotesticular syndrome (also known as ovotesticular disorder or OT-DSD) is a rare congenital condition where an individual is born with both ovarian and testicular tissue. It is one of the rarest disorders of sex development (DSDs), with only 500 reported cases. Commonly, one or both gonads is an ovotestis containing both types of tissue. Although it is similar in some ways to mixed gonadal dysgenesis, the conditions can be distinguished histologically.

View the full Wikipedia page for Ovotesticular syndrome
↑ Return to Menu

Testis in the context of Spermatocyte

Spermatocytes are a type of male gametocyte in animals. They derive from immature germ cells called spermatogonia. They are found in the testis, in a structure known as the seminiferous tubules. There are two types of spermatocytes, primary and secondary spermatocytes. Primary and secondary spermatocytes are formed through the process of spermatocytogenesis.

Primary spermatocytes are diploid (2N) cells. After meiosis I, two secondary spermatocytes are formed. Secondary spermatocytes are haploid (N) cells that contain half the number of chromosomes.

View the full Wikipedia page for Spermatocyte
↑ Return to Menu

Testis in the context of Mesothelium

The mesothelium is a membrane composed of simple squamous epithelial cells of mesodermal origin, which forms the lining of several body cavities: the pleura (pleural cavity around the lungs), peritoneum (abdominopelvic cavity including the mesentery, greater and lesser omentum, falciform ligament and the perimetrium) and pericardium (around the heart).

Mesothelial tissue also surrounds the male testis (as the tunica vaginalis) and occasionally the spermatic cord (in a patent processus vaginalis). Mesothelium that covers the internal organs is called visceral mesothelium, while one that covers the surrounding body walls is called the parietal mesothelium. The mesothelium that secretes serous fluid as a main function is also known as a serosa.

View the full Wikipedia page for Mesothelium
↑ Return to Menu