Terajoule in the context of "Little Boy"

Play Trivia Questions online!

or

Skip to study material about Terajoule in the context of "Little Boy"

Ad spacer

⭐ Core Definition: Terajoule

The joule (/l/ JOOL, or /l/ JOWL; symbol: J) is the unit of energy in the International System of Units (SI). In terms of SI base units, one joule corresponds to one kilogram-metre squared per second squared (1 J = 1 kg⋅m⋅s). One joule is equal to the amount of work done when a force of one newton displaces a body through a distance of one metre in the direction of that force. It is also the energy dissipated as heat when an electric current of one ampere passes through a resistance of one ohm for one second. It is named after the English physicist James Prescott Joule (1818–1889).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Terajoule in the context of Little Boy

Little Boy was a type of atomic bomb created by the Manhattan Project during World War II. The name is also often used to describe the specific bomb (L-11) used in the bombing of the Japanese city of Hiroshima by the Boeing B-29 Superfortress Enola Gay on 6 August 1945, making it the first nuclear weapon used in warfare, and the second nuclear explosion in history, after the Trinity nuclear test. It exploded with an energy of approximately 15 kilotons of TNT (63 TJ) and had an explosion radius of approximately 1.3 kilometres (0.81 mi) which caused widespread death across the city. It was a gun-type fission weapon which used uranium that had been enriched in the isotope uranium-235 to power its explosive reaction.

Little Boy was developed by Lieutenant Commander Francis Birch's group at the Los Alamos Laboratory. It was the successor to a plutonium-fueled gun-type fission design, Thin Man, which was abandoned in 1944 after technical difficulties were discovered. Little Boy used a charge of cordite to fire a hollow cylinder (the "bullet") of highly enriched uranium through an artillery gun barrel into a solid cylinder (the "target") of the same material. The design was highly inefficient: the weapon used on Hiroshima contained 64 kilograms (141 lb) of uranium, but less than a kilogram underwent nuclear fission. Unlike the implosion design developed for the Trinity test and the Fat Man bomb design that was used against Nagasaki, which required sophisticated coordination of shaped explosive charges, the simpler but inefficient gun-type design was considered almost certain to work, and was never tested prior to its use at Hiroshima.

↓ Explore More Topics
In this Dossier

Terajoule in the context of Nuclear weapon yield

The explosive yield of a nuclear weapon is the amount of energy released such as blast, thermal, and nuclear radiation, when that particular nuclear weapon is detonated. It is usually expressed as a TNT equivalent, the standardized equivalent mass of trinitrotoluene (TNT) which would produce the same energy discharge if detonated, either in kilotonnes (symbol kt, thousands of tonnes of TNT), in megatonnes (Mt, millions of tonnes of TNT). It is also sometimes expressed in terajoules (TJ); an explosive yield of one terajoule is equal to 0.239 kilotonnes of TNT. Because the accuracy of any measurement of the energy released by TNT has always been problematic, the conventional definition is that one kilotonne of TNT is held simply to be equivalent to 10 calories.

The yield-to-weight ratio is the amount of weapon yield compared to the mass of the weapon. The practical maximum yield-to-weight ratio for fusion weapons (thermonuclear weapons) has been estimated to six megatonnes of TNT per tonne of bomb mass (25 TJ/kg). Yields of 5.2 megatonnes/tonne and higher have been reported for large weapons constructed for single-warhead use in the early 1960s. Since then, the smaller warheads needed to achieve the increased net damage efficiency (bomb damage/bomb mass) of multiple warhead systems have resulted in increases in the yield/mass ratio for single modern warheads.

↑ Return to Menu

Terajoule in the context of W88

The W88 is an American thermonuclear warhead, with an estimated yield of 475 kilotons of TNT (1,990 terajoules), and is small enough to fit on missiles with multiple independently targetable reentry vehicles (MIRV). The W88 was designed at the Los Alamos National Laboratory in the 1970s and first placed into service in 1989. The director of Los Alamos who had presided over its development described it as "the most advanced U.S. nuclear warhead". The latest version is the W88 ALT 370, the first unit of which came into production on 1 July 2021, after 11 years of development. The Trident II, a submarine-launched ballistic missile (SLBM) can be armed with up to eight W88 warheads.

↑ Return to Menu