Telencephalon in the context of Prosencephalon


Telencephalon in the context of Prosencephalon

Telencephalon Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Telencephalon in the context of "Prosencephalon"


⭐ Core Definition: Telencephalon

The cerebrum (pl.: cerebra), telencephalon or endbrain is the largest part of the brain, containing the cerebral cortex (of the two cerebral hemispheres) as well as several subcortical structures, including the hippocampus, basal ganglia, and olfactory bulb. In the human brain, the cerebrum is the uppermost region of the central nervous system. The cerebrum develops prenatally from the forebrain (prosencephalon). In mammals, the dorsal telencephalon, or pallium, develops into the cerebral cortex, and the ventral telencephalon, or subpallium, becomes the basal ganglia. The cerebrum is also divided into approximately symmetric left and right cerebral hemispheres.

With the assistance of the cerebellum, the cerebrum controls all voluntary actions in the human body.

↓ Menu
HINT:

In this Dossier

Telencephalon in the context of Brain

The brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for special senses such as vision, hearing, and olfaction. Being the most specialized organ, it is responsible for receiving information from the sensory nervous system, processing that information (thought, cognition, and intelligence) and the coordination of motor control (muscle activity and endocrine system).

While invertebrate brains arise from paired segmental ganglia (each of which is only responsible for the respective body segment) of the ventral nerve cord, vertebrate brains develop axially from the midline dorsal nerve cord as a vesicular enlargement at the rostral end of the neural tube, with centralized control over all body segments. All vertebrate brains can be embryonically divided into three parts: the forebrain (prosencephalon, subdivided into telencephalon and diencephalon), midbrain (mesencephalon) and hindbrain (rhombencephalon, subdivided into metencephalon and myelencephalon). The spinal cord, which directly interacts with somatic functions below the head, can be considered a caudal extension of the myelencephalon enclosed inside the vertebral column. Together, the brain and spinal cord constitute the central nervous system in all vertebrates.

View the full Wikipedia page for Brain
↑ Return to Menu

Telencephalon in the context of Forebrain

In the anatomy of the brain of vertebrates, the forebrain or prosencephalon is the rostral (forward-most) portion of the brain. The forebrain controls body temperature, reproductive functions, eating, sleeping, and the display of emotions.

Vesicles of the forebrain (prosencephalon), the midbrain (mesencephalon), and hindbrain (rhombencephalon) are the three primary brain vesicles during the early development of the nervous system. At the five-vesicle stage, the forebrain separates into the diencephalon (thalamus, hypothalamus, subthalamus, and epithalamus) and the telencephalon which develops into the cerebrum. The cerebrum consists of the cerebral cortex, underlying white matter, and the basal ganglia.

View the full Wikipedia page for Forebrain
↑ Return to Menu

Telencephalon in the context of Diencephalon

In the human brain, the diencephalon (or interbrain) is a division of the forebrain (embryonic prosencephalon). It is situated between the telencephalon and the midbrain (embryonic mesencephalon). The diencephalon has also been known as the tweenbrain in older literature. It consists of structures that are on either side of the third ventricle, including the thalamus, the hypothalamus, the epithalamus and the subthalamus.

The diencephalon is one of the main vesicles of the brain formed during embryonic development. During the third week of development a neural tube is created from the ectoderm, one of the three primary germ layers, and forms three main vesicles: the prosencephalon, the mesencephalon and the rhombencephalon. The prosencephalon gradually divides into the telencephalon (the cerebrum) and the diencephalon.

View the full Wikipedia page for Diencephalon
↑ Return to Menu

Telencephalon in the context of Pallium (neuroanatomy)

In neuroanatomy, pallium (pl.: pallia or palliums) refers to the layers of grey and white matter that cover the upper surface of the cerebrum in vertebrates. The non-pallial part of the telencephalon builds the subpallium. In basal vertebrates, the pallium is a relatively simple three-layered structure, encompassing 3–4 histogenetically distinct domains, plus the olfactory bulb.

It used to be thought that pallium equals cortex and subpallium equals telencephalic nuclei, but it has turned out, according to comparative evidence provided by molecular markers, that the pallium develops both cortical structures (allocortex and isocortex) and pallial nuclei (claustroamygdaloid complex), whereas the subpallium develops striatal, pallidal, diagonal-innominate and preoptic nuclei, plus the corticoid structure of the olfactory tuberculum.

View the full Wikipedia page for Pallium (neuroanatomy)
↑ Return to Menu

Telencephalon in the context of Paleocortex

In anatomy of animals, the paleocortex, or paleopallium, is a region within the telencephalon in the vertebrate brain. This type of cortical tissue consists of three cortical laminae (layers of neuronal cell bodies). In comparison, the neocortex has six layers and the archicortex has three or four layers. Because the number of laminae that compose a type of cortical tissue seems to be directly proportional to both the information-processing capabilities of that tissue and its phylogenetic age, paleocortex is thought to be an intermediate between the archicortex (or archipallium) and the neocortex (or neopallium) in both aspects.

The paleocortex (or paleopallium) and the archicortex (or the archipallium) of the cerebral cortex together constitute the mammalian allocortex or the heterogenetic cortex. The distinction for what is called neocortex or isocortex, which comprises most of the human brain (about 90%), is made from the number of cellular layers that the structure comprises. Neocortical tissue comprises six distinct cell layers, not seen in paleocortical tissues either in adult or developing stage.

View the full Wikipedia page for Paleocortex
↑ Return to Menu

Telencephalon in the context of Archicortex

The archicortex, or archipallium, is the phylogenetically second oldest region of the brain's cerebral cortex (the oldest is the paleocortex). In older species, such as fish, the archipallium makes up most of the cerebrum. Amphibians develop an archipallium and paleopallium.

In humans, the archicortex makes up the three cortical layers of the hippocampus. It has fewer cortical layers than both the neocortex, which has six, and the paleocortex, which has either four or five. The archicortex, along with the paleocortex and periallocortex, is a subtype of allocortex. Because the number of cortical layers that make up a type of cortical tissue seems to be directly proportional to both the information-processing capabilities of that tissue and its phylogenetic age, the archicortex is thought to be the oldest and most basic type of cortical tissue.

View the full Wikipedia page for Archicortex
↑ Return to Menu

Telencephalon in the context of Escape reflex

Escape reflex, or escape behavior, is any kind of escape response found in an animal when it is presented with an unwanted stimulus. It is a simple reflectory reaction in response to stimuli indicative of danger, that initiates an escape motion of an animal. The escape response has been found to be processed in the telencephalon.

Escape reflexes control the seemingly chaotic motion of a cockroach running out from under a foot when one tries to squash it.

View the full Wikipedia page for Escape reflex
↑ Return to Menu

Telencephalon in the context of Globus pallidus

The globus pallidus (GP), also known as paleostriatum or dorsal pallidum, is a major component of the subcortical basal ganglia in the brain. It consists of two adjacent segments, one external (or lateral), known in rodents simply as the globus pallidus, and one internal (or medial). It is part of the telencephalon, but retains close functional ties with the subthalamus in the diencephalon – both of which are part of the extrapyramidal motor system.

The globus pallidus receives principal inputs from the striatum, and principal direct outputs to the thalamus and the substantia nigra. The latter is made up of similar neuronal elements, has similar afferents from the striatum, similar projections to the thalamus, and has a similar synaptology. Neither receives direct cortical afferents, and both receive substantial additional inputs from the intralaminar thalamic nuclei.

View the full Wikipedia page for Globus pallidus
↑ Return to Menu

Telencephalon in the context of Subventricular zone

The subventricular zone (SVZ) is a region situated on the outside wall of each lateral ventricle of the vertebrate brain. It is present in both the embryonic and adult brain. In embryonic life, the SVZ refers to a secondary proliferative zone containing neural progenitor cells, which divide to produce neurons in the process of neurogenesis. The primary neural stem cells of the brain and spinal cord, termed radial glial cells, instead reside in the ventricular zone (VZ) (so-called because the VZ lines the inside of the developing ventricles).

In the developing cerebral cortex, which resides in the dorsal telencephalon, the SVZ and VZ are transient tissues that do not exist in the adult. However, the SVZ of the ventral telencephalon persists throughout life. The adult SVZ is composed of four distinct layers of variable thickness and cell density as well as cellular composition. Along with the dentate gyrus of the hippocampus, the SVZ is one of two places where neurogenesis has been found to occur in the adult mammalian brain. Adult SVZ neurogenesis takes the form of neuroblast precursors of interneurons that migrate to the olfactory bulb through the rostral migratory stream. The SVZ also appears to be involved in the generation of astrocytes following a brain injury.

View the full Wikipedia page for Subventricular zone
↑ Return to Menu