Teeth in the context of Ectoderm


Teeth in the context of Ectoderm

Teeth Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Teeth in the context of "Ectoderm"


HINT:

In this Dossier

Teeth in the context of Toothed whale

The toothed whales (also called odontocetes, systematic name Odontoceti) are a parvorder of cetaceans that includes dolphins, porpoises, and all other whales with teeth, such as beaked whales and the sperm whales. 73 species of toothed whales are described. They are one of two living groups of cetaceans, with the other being the baleen whales (Mysticeti), which have baleen instead of teeth. The two groups are thought to have diverged around 34 million years ago (mya).

Toothed whales range in size from the 1.4 m (4 ft 7 in) and 54 kg (119 lb) vaquita to the 20 m (66 ft) and 100 t (98 long tons; 110 short tons) sperm whale. Several species of odontocetes exhibit sexual dimorphism, in that there are size or other morphological differences between females and males. They have streamlined bodies and two limbs that are modified into flippers. Some can travel at up to 30 knots. Odontocetes have conical teeth designed for catching fish or squid. They have well-developed hearing that is adapted for both air and water, so much so that some can survive even if they are blind. Some species are well adapted for diving to great depths. Almost all have a layer of fat, or blubber, under the skin to keep warm in the cold water, with the exception of river dolphins.

View the full Wikipedia page for Toothed whale
↑ Return to Menu

Teeth in the context of Herbivore

A herbivore is an animal anatomically and physiologically evolved to feed on plants, especially upon vascular tissues such as foliage, fruits or seeds, as the main component of its diet. These more broadly also encompass animals that eat non-vascular autotrophs such as mosses, algae and lichens, but do not include those feeding on decomposed plant matters (i.e. detritivores) or macrofungi (i.e. fungivores).

As a result of their plant-based diet, herbivorous animals typically have mouth structures (jaws or mouthparts) well adapted to mechanically break down plant materials, and their digestive systems have special enzymes (e.g. amylase and cellulase) to digest polysaccharides. Grazing herbivores such as horses and cattles have wide flat-crowned teeth that are better adapted for grinding grass, tree bark and other tougher lignin-containing materials, and many of them evolved rumination or cecotropic behaviors to better extract nutrients from plants. A large percentage of herbivores also have mutualistic gut flora made up of bacteria and protozoans that help to degrade the cellulose in plants, whose heavily cross-linking polymer structure makes it far more difficult to digest than the protein- and fat-rich animal tissues that carnivores eat.

View the full Wikipedia page for Herbivore
↑ Return to Menu

Teeth in the context of Biofilm

A biofilm is a syntrophic community of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular polymeric substances (EPSs). The cells within the biofilm produce the EPS components, which are typically a polymeric combination of extracellular polysaccharides, proteins, lipids and DNA. Because they have a three-dimensional structure and represent a community lifestyle for microorganisms, they have been metaphorically described as "cities for microbes".

Biofilms may form on living (biotic) or non-living (abiotic) surfaces and can be common in natural, industrial, and hospital settings. They may constitute a microbiome or be a portion of it. The microbial cells growing in a biofilm are physiologically distinct from planktonic cells of the same organism, which, by contrast, are single cells that may float or swim in a liquid medium. Biofilms can form on the teeth of most animals as dental plaque, where they may cause tooth decay and gum disease.

View the full Wikipedia page for Biofilm
↑ Return to Menu

Teeth in the context of Soft-bodied organism

Soft-bodied organisms are organisms that lack rigid physical skeletons or frame, roughly corresponds to the group Vermes as proposed by Carl von Linné. The term typically refers to non-panarthropod invertebrates from the kingdom Animalia, although many non-vascular plants (mosses and algae), fungi (such as jelly fungus), lichens and slime molds can also be seen as soft-bodied organisms by definition.

All animals have a muscular system of some sort but, since myocytes are tensile actuator units that can only contract and pull but never push, some animals evolved rigid body parts upon which the muscles can attach and act as levers/cantilevers to redirect force and produce locomotive propulsion. These rigid parts also serve as structural elements to resist gravity and ambient pressure, as well as sometimes provide protective surfaces shielding internal structures from trauma and exposure to external thermal, chemical and pathogenic insults. Such physical structures are the commonly referred "skeletons", which may be internal (as in vertebrates, echinoderms and sponges) or external (as in arthropods and non-coleoid molluscs). However, many soft-bodied animals do still have a functional skeleton maintained by body fluid hydrostatics known as a hydroskeleton, such as that of earthworms, jellyfish, tapeworms, squids and an enormous variety of invertebrates from almost every phyla of the animal kingdom; and many have hardened teeth that allow them to chew, bite and burrow despite the rest of body being soft.

View the full Wikipedia page for Soft-bodied organism
↑ Return to Menu

Teeth in the context of Tusk

Tusks are elongated, continuously growing front teeth that protrude well beyond the mouth of certain mammal species. They are most commonly canine teeth, as with narwhals, chevrotains, musk deer, water deer, muntjac, pigs, peccaries, hippopotamuses and walruses, or, in the case of elephants, elongated incisors. Tusks share common features such as extra-oral position, growth pattern, composition and structure, and lack of contribution to ingestion. In most tusked species both the males and the females have tusks although the males' are larger. Most mammals with tusks have a pair of them growing out from either side of the mouth. Tusks are generally curved and have a smooth, continuous surface. The male narwhal's straight single helical tusk, which usually grows out from the left of the mouth, is an exception to the typical features of tusks described above. Continuous growth of tusks is enabled by formative tissues in the apical openings of the roots of the teeth.

Other than mammals, dicynodonts are the only known vertebrates to have true tusks.

View the full Wikipedia page for Tusk
↑ Return to Menu

Teeth in the context of Jawed fish

Gnathostomata (/ˌnæθˈstɒmətə/; from Ancient Greek: γνάθος (gnathos) 'jaw' + στόμα (stoma) 'mouth') are jawed vertebrates. Gnathostome diversity comprises roughly 60,000 species, which accounts for 99% of all extant vertebrates, including all living bony fishes (both ray-finned and lobe-finned, including their terrestrial tetrapod relatives) and cartilaginous fishes, as well as extinct prehistoric fish such as placoderms and acanthodians. Most gnathostomes have retained ancestral traits like true teeth, a stomach, and paired appendages (pectoral and pelvic fins, limbs, wings, etc.). Other traits are elastin, horizontal semicircular canal of the inner ear, myelinated neurons, and an adaptive immune system which has discrete lymphoid organs (spleen and thymus) and uses V(D)J recombination to create antigen recognition sites, rather than using genetic recombination in the variable lymphocyte receptor gene.

It is now assumed that Gnathostomata evolved from ancestors that already possessed two pairs of paired fins. Until recently these ancestors, known as antiarchs, were thought to have lacked pectoral or pelvic fins. In addition to this, some placoderms were shown to have a third pair of paired appendages, that had been modified to claspers in males and pelvic basal plates in females — a pattern not seen in any other vertebrate group. The jawless Osteostraci are generally considered the closest sister taxon of Gnathostomata.

View the full Wikipedia page for Jawed fish
↑ Return to Menu

Teeth in the context of Salmonidae

Salmonidae (/sælˈmɒnɪd/, lit.'salmon-like') is a family of ray-finned fish, the only extant member of the suborder Salmonoidei, consisting of 11 extant genera and over 200 species collectively known as "salmonids" or "salmonoids". The family includes salmon (both Atlantic and Pacific species), trout (both ocean-going and landlocked), char, graylings, freshwater whitefishes, taimens and lenoks, all coldwater mid-level predatory fish that inhabit the subarctic and cool temperate waters of the Northern Hemisphere. The Atlantic salmon (Salmo salar), whose Latin name became that of its genus Salmo, is also the eponym of the family and order names.

Salmonids have a relatively primitive appearance among teleost fish, with the pelvic fins being placed far back, and an adipose fin towards the rear of the back. They have slender bodies with rounded scales and forked tail fins, and their mouths contain a single row of sharp teeth. Although the smallest salmonid species is just 13 cm (5.1 in) long for adults, most salmonids are much larger, with the largest reaching 2 m (6 ft 7 in).

View the full Wikipedia page for Salmonidae
↑ Return to Menu

Teeth in the context of Deciduous teeth

Deciduous teeth or primary teeth, also informally known as baby teeth, milk teeth, or temporary teeth, are the first set of teeth in the growth and development of humans and other diphyodonts, which include most mammals but not elephants, kangaroos, or manatees, which are polyphyodonts. Deciduous teeth develop during the embryonic stage of development and erupt (break through the gums and become visible in the mouth) during infancy. They are usually lost and replaced by permanent teeth, but in the absence of their permanent replacements, they can remain functional for many years into adulthood.

View the full Wikipedia page for Deciduous teeth
↑ Return to Menu

Teeth in the context of Dentine

Dentin (/ˈdɛntɪn/ DEN-tin) (American English) or dentine (/ˈdɛnˌtn/ DEN-teen or /ˌdɛnˈtn/ DEN-TEEN) (British English) (Latin: substantia eburnea) is a calcified tissue of the body and, along with enamel, cementum, and pulp, is one of the four major components of teeth. It is usually covered by enamel on the crown and cementum on the root and surrounds the entire pulp. By volume, 45% of dentin consists of the mineral hydroxyapatite, 33% is organic material, and 22% is water. Yellow in appearance, it greatly affects the color of a tooth due to the translucency of enamel. Dentin, which is less mineralized and less brittle than enamel, is necessary for the support of enamel. Dentin rates approximately 3 on the Mohs scale of mineral hardness. There are two main characteristics which distinguish dentin from enamel: firstly, dentin forms throughout life; secondly, dentin is sensitive and can become hypersensitive to changes in temperature due to the sensory function of odontoblasts, especially when enamel recedes and dentin channels become exposed.

View the full Wikipedia page for Dentine
↑ Return to Menu

Teeth in the context of Megalodon

Otodus megalodon (/ˈmɛɡələdɒn/ MEG-əl-ə-don; meaning "big tooth"), commonly known as megalodon, is an extinct species of giant mackerel shark that lived approximately 23 to 3.6 million years ago (Mya), from the Early Miocene to the Early Pliocene epochs. This prehistoric fish was formerly thought to be a member of the family Lamnidae and a close relative of the great white shark (Carcharodon carcharias), but has been reclassified into the extinct family Otodontidae, which diverged from the great white shark during the Early Cretaceous.

While regarded as one of the largest and most powerful predators to have ever lived, megalodon is only known from fragmentary remains, and its appearance and maximum size are uncertain. Scientists have argued whether its body form was more stocky or elongated than the modern lamniform sharks. Maximum body length estimates between 14.2 and 24.3 metres (47 and 80 ft) based on various analyses have been proposed, though the modal lengths for individuals of all ontogenetic stages from juveniles to adults are estimated at 10.5 meters (34 ft). Their teeth were thick and robust, built for grabbing prey and breaking bone, and their large jaws could exert a bite force of up to 108,500 to 182,200 newtons (24,390 to 40,960 lbf).

View the full Wikipedia page for Megalodon
↑ Return to Menu

Teeth in the context of Dental tartar

In dentistry, dental calculus or tartar is a form of hardened dental plaque. It is caused by precipitation of minerals from saliva and gingival crevicular fluid (GCF) in plaque on the teeth. This process of precipitation kills the bacterial cells within dental plaque, but the rough and hardened surface that is formed provides an ideal surface for further plaque formation. This leads to calculus buildup, which compromises the health of the gingiva (gums). Calculus can form both along the gumline, where it is referred to as supragingival ('above the gum'), and within the narrow sulcus that exists between the teeth and the gingiva, where it is referred to as subgingival ('below the gum').

Calculus formation is associated with a number of clinical manifestations, including bad breath, receding gums and chronically inflamed gingiva. Brushing and flossing can remove plaque from which calculus forms; however, once formed, calculus is too hard (firmly attached) to be removed with a toothbrush. Calculus buildup can be removed with ultrasonic tools or dental hand instruments (such as a periodontal scaler).

View the full Wikipedia page for Dental tartar
↑ Return to Menu

Teeth in the context of Oral cavity

A mouth also referred to as the oral is the body orifice through which many animals ingest food and vocalize. The body cavity immediately behind the mouth opening, known as the oral cavity (or cavum oris in Latin), is also the first part of the alimentary canal, which leads to the pharynx and the gullet. In tetrapod vertebrates, the mouth is bounded on the outside by the lips and cheeks — thus the oral cavity is also known as the buccal cavity (from Latin bucca, meaning "cheek") — and contains the tongue on the inside. Except for some groups like birds and lissamphibians, vertebrates usually have teeth in their mouths, although some fish species have pharyngeal teeth instead of oral teeth.

Most bilaterian phyla, including arthropods, molluscs and chordates, have a two-opening gut tube with a mouth at one end and an anus at the other. Which end forms first in ontogeny is a criterion used to classify bilaterian animals into protostomes and deuterostomes.

View the full Wikipedia page for Oral cavity
↑ Return to Menu

Teeth in the context of Hard palate

The hard palate is a thin horizontal bony plate made up of two bones of the facial skeleton, located in the roof of the mouth. The bones are the palatine process of the maxilla and the horizontal plate of palatine bone. The hard palate spans the alveolar arch formed by the alveolar process that holds the upper teeth (when these are developed).

View the full Wikipedia page for Hard palate
↑ Return to Menu

Teeth in the context of Soft tissue

Soft tissue connects and surrounds or supports internal organs and bones, and includes muscle, tendons, ligaments, fat, fibrous tissue, lymph and blood vessels, fasciae, and synovial membranesSoft tissue is tissue in the body that is not hardened by the processes of ossification or calcification such as bones and teeth.

It is sometimes defined by what it is not – such as "nonepithelial, extraskeletal mesenchyme exclusive of the reticuloendothelial system and glia".

View the full Wikipedia page for Soft tissue
↑ Return to Menu

Teeth in the context of Sibilant

Sibilants (from Latin: sibilans 'hissing') are fricative and affricate consonants of higher amplitude and pitch, made by directing a stream of air with the tongue towards the teeth. Examples of sibilants are the consonants at the beginning of the English words sip, zip, ship, and genre. The symbols in the International Phonetic Alphabet used to denote the sibilant sounds in these words are, respectively, [s] [z] [ʃ] [ʒ]. Sibilants have a characteristically intense sound, which accounts for their paralinguistic use in getting one's attention (e.g. calling someone using "psst!" or quieting someone using "shhhh!").

View the full Wikipedia page for Sibilant
↑ Return to Menu