Technetium in the context of "Quadruple bond"

Play Trivia Questions online!

or

Skip to study material about Technetium in the context of "Quadruple bond"




⭐ Core Definition: Technetium

Technetium is a chemical element; it has symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. Technetium and promethium are the only radioactive elements whose neighbours in the sense of atomic number are both stable. All available technetium is produced as a synthetic element. Naturally occurring technetium is a spontaneous fission product in uranium ore and thorium ore (the most common source), or the product of neutron capture in molybdenum ores. This silvery gray, crystalline transition metal lies between manganese and rhenium in groupΒ 7 of the periodic table, and its chemical properties are intermediate between those of both adjacent elements. The most common naturally occurring isotope is Tc, in traces only.

Many of technetium's properties had been predicted by Dmitri Mendeleev before it was discovered; Mendeleev noted a gap in his periodic table and gave the undiscovered element the provisional name ekamanganese (Em). In 1937, technetium became the first predominantly artificial element to be produced, hence its name (from the Greek technetos, 'artificial', + -ium).

↓ Menu

πŸ‘‰ Technetium in the context of Quadruple bond

A quadruple bond is a type of chemical bond between two atoms involving eight electrons. This bond is an extension of the more familiar types of covalent bonds: double bonds and triple bonds. Stable quadruple bonds are most common among the transition metals in the middle of the d-block, such as rhenium, tungsten, technetium, molybdenum and chromium. Typically the ligands that support quadruple bonds are Ο€-donors, not Ο€-acceptors. Quadruple bonds are rare as compared to double bonds and triple bonds, but hundreds of compounds with such bonds have been prepared.

↓ Explore More Topics
In this Dossier

Technetium in the context of Noble metal

A noble metal is a metallic chemical element that is resistant to corrosion and is usually found in nature in its raw form. Gold, platinum, and the other platinum group metals (ruthenium, rhodium, palladium, osmium, iridium) are most often so classified. Silver, copper, and mercury are sometimes included as noble metals, but each of these usually occurs in nature combined with sulfur.

In more specialized fields of study and applications, the number of elements counted as noble metals can vary. In some contexts, the term is used only for copper, silver, and gold which have filled d-bands. In others, it is applied more broadly to any metallic or semimetallic element that does not react with a weak acid and give off hydrogen gas in the process. This broader set includes copper, mercury, technetium, rhenium, arsenic, antimony, bismuth, polonium, gold, the six platinum group metals, and silver.

↑ Return to Menu

Technetium in the context of Rhenium

Rhenium is a chemical element; it has symbol Re and atomic number 75. It is a silvery-gray, heavy, third-row transition metal in group 7 of the periodic table. With an estimated average concentration of 1 part per billion (ppb), rhenium is one of the rarest elements in the Earth's crust. It has one of the highest melting and boiling points of any element. It resembles manganese and technetium chemically and is mainly obtained as a by-product of the extraction and refinement of molybdenum and copper ores. It shows in its compounds a wide variety of oxidation states ranging from βˆ’3 to +7.

Rhenium was originally discovered in 1908 by Masataka Ogawa, but he mistakenly assigned it as element 43 (now known as technetium) rather than element 75 and named it nipponium. It was rediscovered in 1925 by Walter Noddack, Ida Tacke and Otto Berg, who gave it its present name. It was named after the river Rhine in Europe, from which the earliest samples had been obtained and worked commercially.

↑ Return to Menu

Technetium in the context of Group 7 element

Group 7, numbered by IUPAC nomenclature, is a group of elements in the periodic table. It contains manganese (Mn), technetium (Tc), rhenium (Re) and bohrium (Bh). This group lies in the d-block of the periodic table, and are hence transition metals. This group is sometimes called the manganese group or manganese family after its lightest member; however, the group itself has not acquired a trivial name because it belongs to the broader grouping of the transition metals.

The group 7 elements tend to have a major group oxidation state (+7), although this trend is markedly less coherent than the previous groups. Like other groups, the members of this family show patterns in their electron configurations, especially the outermost shells resulting in trends in chemical behavior. In nature, manganese is a fairly common element, whereas rhenium is rare, technetium only occurs in trace quantities, and bohrium is entirely synthetic.

↑ Return to Menu

Technetium in the context of Masataka Ogawa

Masataka Ogawa (小川 正孝, Ogawa Masataka; 21 February 1865 – 11 July 1930) was a Japanese chemist mainly known for the claimed discovery of element 43 (later known as technetium), which he named nipponium. In fact, he had discovered, but misidentified, element 75 (later called rhenium).

After graduating from the University of Tokyo, he studied under William Ramsay in London, where he worked on the analysis of the rare mineral thorianite. He extracted and isolated a small amount of an apparently unknown substance from the mineral, which he announced as the discovery of element 43, naming the newly discovered element nipponium. He published his results in 1909 and a notice was also published in the Journal of the American Chemical Society. For this work, he was awarded a doctorate and the highest prize of the Tokyo Chemical Society. However, no other researchers were able to replicate his discovery, and the announcement was forgotten.

↑ Return to Menu

Technetium in the context of Walter Noddack

Walter Noddack (17 August 1893 – 7 December 1960) was a German chemist. He, Ida Tacke (who later married Noddack), and Otto Berg reported the discovery of element 43 and element 75 in 1925.

↑ Return to Menu

Technetium in the context of Synthetic element

A synthetic element is a known chemical element that does not occur naturally on Earth: it has been created by human manipulation of fundamental particles in a nuclear reactor, a particle accelerator, or the explosion of an atomic bomb; thus, it is called "synthetic", "artificial", or "man-made". The synthetic elements are those with atomic numbers 95–118, as shown in purple on the accompanying periodic table: these 24 elements were first created between 1944 and 2010. The mechanism for the creation of a synthetic element is to force additional protons into the nucleus of an element with an atomic number lower than 95. All known (see: Island of stability) synthetic elements are unstable, but they decay at widely varying rates; the half-lives of their longest-lived isotopes range from microseconds to millions of years.

Five more elements that were first created artificially are strictly speaking not synthetic because they were later found in nature in trace quantities: technetium (43Tc), promethium (61Pm), astatine (85At), neptunium (93Np), and plutonium (94Pu); although they are sometimes classified as synthetic alongside exclusively artificial elements. The first, technetium, was created in 1937. Plutonium, first synthesized in 1940, is another such element. It is the element with the largest number of protons (atomic number) to occur in nature, but it does so in such tiny quantities that it is far more practical to synthesize it. Plutonium is known mainly for its use in atomic bombs and nuclear reactors.

↑ Return to Menu