Taylor series in the context of "Power series"

Play Trivia Questions online!

or

Skip to study material about Taylor series in the context of "Power series"

Ad spacer

⭐ Core Definition: Taylor series

In mathematical analysis, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point. Taylor series are named after Brook Taylor, who introduced them in 1715. A Taylor series is also called a Maclaurin series when 0 is the point where the derivatives are considered, after Colin Maclaurin, who made extensive use of this special case of Taylor series in the 18th century.

The partial sum formed by the first n + 1 terms of a Taylor series is a polynomial of degree n that is called the nth Taylor polynomial of the function. Taylor polynomials are approximations of a function, which become generally more accurate as n increases. Taylor's theorem gives quantitative estimates on the error introduced by the use of such approximations. If the Taylor series of a function is convergent, its sum is the limit of the infinite sequence of the Taylor polynomials. A function may differ from the sum of its Taylor series, even if its Taylor series is convergent. A function is analytic at a point x if it is equal to the sum of its Taylor series in some open interval (or open disk in the complex plane) containing x. This implies that the function is analytic at every point of the interval (or disk).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Taylor series in the context of Power series

In mathematics, a power series (in one variable) is an infinite series of the formwhere represents the coefficient of the nth term and c is a constant called the center of the series. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function.

In many situations, the center c is equal to zero, for instance for Maclaurin series. In such cases, the power series takes the simpler form

↓ Explore More Topics
In this Dossier

Taylor series in the context of Complex analysis

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of a complex variable of complex numbers. It is helpful in many branches of mathematics, including real analysis, algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.

At first glance, complex analysis is the study of holomorphic functions that are the differentiable functions of a complex variable. By contrast with the real case, a holomorphic functions is always infinitely differentiable and equal to the sum of its Taylor series in some neighborhood of each point of its domain.This makes methods and results of complex analysis significantly different from that of real analysis. In particular, contrarily, with the real case, the domain of every holomorphic function can be uniquely extended to almost the whole complex plane. This implies that the study of real analytic functions needs often the power of complex analysis. This is, in particular, the case in analytic combinatorics.

↑ Return to Menu

Taylor series in the context of Analytic function

In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions.

A function is analytic if and only if for every in its domain, its Taylor series about converges to the function in some neighborhood of . This is stronger than merely being infinitely differentiable at , and therefore having a well-defined Taylor series; the Fabius function provides an example of a function that is infinitely differentiable but not analytic.

↑ Return to Menu

Taylor series in the context of Functions of a complex variable

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of a complex variable of complex numbers. It is helpful in many branches of mathematics, including real analysis, algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.

At first glance, complex analysis is the study of holomorphic functions that are the differentiable functions of a complex variable. By contrast with the real case, a holomorphic function is always infinitely differentiable and equal to the sum of its Taylor series in some neighborhood of each point of its domain.This makes methods and results of complex analysis significantly different from that of real analysis. In particular, contrarily, with the real case, the domain of every holomorphic function can be uniquely extended to almost the whole complex plane. This implies that the study of real analytic functions needs often the power of complex analysis. This is, in particular, the case in analytic combinatorics.

↑ Return to Menu

Taylor series in the context of Holomorphic functions

In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivative in a neighbourhood is a very strong condition: It implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (is analytic). Holomorphic functions are the central objects of study in complex analysis.

Though the term analytic function is often used interchangeably with "holomorphic function", the word "analytic" is defined in a broader sense to denote any function (real, complex, or of more general type) that can be written as a convergent power series in a neighbourhood of each point in its domain. That all holomorphic functions are complex analytic functions, and vice versa, is a major theorem in complex analysis.

↑ Return to Menu

Taylor series in the context of First difference

In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation. If the values of the first numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation.

In linear recurrences, the nth term is equated to a linear function of the previous terms. A famous example is the recurrence for the Fibonacci numbers,where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on For these recurrences, one can express the general term of the sequence as a closed-form expression of . As well, linear recurrences with polynomial coefficients depending on are also important, because many common elementary functions and special functions have a Taylor series whose coefficients satisfy such a recurrence relation (see holonomic function).

↑ Return to Menu

Taylor series in the context of Brook Taylor

Brook Taylor FRS (18 August 1685 – 29 December 1731) was an English mathematician and barrister best known for several results in mathematical analysis. Taylor's most famous developments are Taylor's theorem and the Taylor series, essential in the infinitesimal approach of functions in specific points.

↑ Return to Menu