Taxonomy in the context of Taxonomic synonym


Taxonomy in the context of Taxonomic synonym

Taxonomy Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Taxonomy in the context of "Taxonomic synonym"


⭐ Core Definition: Taxonomy

Taxonomy is a practice and science concerned with classification or categorization. Typically, there are two parts to it: the development of an underlying scheme of classes (a taxonomy) and the allocation of things to the classes (classification).

Originally, taxonomy referred only to the classification of organisms on the basis of shared characteristics. Today it also has a more general sense. It may refer to the classification of things or concepts, as well as to the principles underlying such work. Thus a taxonomy can be used to organize species, documents, videos or anything else.

↓ Menu
HINT:

In this Dossier

Taxonomy in the context of Life

Life is matter that has biological processes, such as signaling and the ability to sustain itself. It is defined descriptively by the capacity for homeostasis, organisation, metabolism, growth, adaptation, response to stimuli, and reproduction. All life over time eventually reaches a state of death, and none is immortal. Many philosophical definitions of living systems have been proposed, such as self-organizing systems. Defining life is further complicated by viruses, which replicate only in host cells, and the possibility of extraterrestrial life, which is likely to be very different from terrestrial life. Life exists all over the Earth in air, water, and soil, with many ecosystems forming the biosphere. Some of these are harsh environments occupied only by extremophiles. The life in a particular ecosystem is called its biota.

Life has been studied since ancient times, with theories such as Empedocles's materialism asserting that it was composed of four eternal elements, and Aristotle's hylomorphism asserting that living things have souls and embody both form and matter. Life originated at least 3.5 billion years ago, resulting in a universal common ancestor. This evolved into all the species that exist now, by way of many extinct species, some of which have left traces as fossils. Attempts to classify living things, too, began with Aristotle. Modern classification began with Carl Linnaeus's system of binomial nomenclature in the 1740s.

View the full Wikipedia page for Life
↑ Return to Menu

Taxonomy in the context of Monophyletic group

In biology, a clade (//kleɪd//) (from Ancient Greek κλάδος (kládos) 'branch'), also known as a monophyletic group or natural group, is a group of organisms that is composed of a common ancestor and all of its descendants. Clades are the fundamental unit of cladistics, a modern approach to taxonomy adopted by most biological fields.

The common ancestor may be an individual, a population, or a species (extinct or extant). Clades are nested, one in another, as each branch in turn splits into smaller branches. These splits reflect evolutionary history as populations diverged and evolved independently. Clades are termed monophyletic (Greek: "one clan") groups.

View the full Wikipedia page for Monophyletic group
↑ Return to Menu

Taxonomy in the context of Ornithology

Ornithology, from Ancient Greek ὄρνις (órnis), meaning "bird", and λόγος (lógos), meaning "study", is a branch of zoology dedicated to the study of birds. Several aspects of ornithology differ from related disciplines, due partly to the high visibility and the aesthetic appeal of birds. It has also been an area with a large contribution made by amateurs in terms of time, resources, and financial support. Studies on birds have helped develop key concepts in biology including evolution, behaviour and ecology such as the definition of species, the process of speciation, instinct, learning, ecological niches, guilds, insular biogeography, phylogeography, and conservation.

While early ornithology was principally concerned with descriptions and distributions of species, ornithologists today seek answers to very specific questions, often using birds as models to test hypotheses or predictions based on theories. Most modern biological theories apply across life forms, and the number of scientists who identify themselves as "ornithologists" has therefore declined. A wide range of tools and techniques are used in ornithology, both inside the laboratory and out in the field, and innovations are constantly made. Most biologists who recognise themselves as "ornithologists" study specific biology research areas, such as anatomy, physiology, taxonomy (phylogenetics), ecology, or behaviour.

View the full Wikipedia page for Ornithology
↑ Return to Menu

Taxonomy in the context of Reptile

Reptiles, as commonly defined, are a group of tetrapods with an ectothermic metabolism and amniotic development. Living traditional reptiles comprise four orders: Testudines, Crocodilia, Squamata, and Rhynchocephalia. About 12,000 living species of reptiles are listed in the Reptile Database. The study of the traditional reptile orders, customarily in combination with the study of modern amphibians, is called herpetology.

Reptiles have been subject to several conflicting taxonomic definitions. In evolutionary taxonomy, reptiles are gathered together under the class Reptilia (/rɛpˈtɪliə/ rep-TIL-ee-ə), which corresponds to common usage. Modern cladistic taxonomy regards that group as paraphyletic, since genetic and paleontological evidence has determined that crocodilians are more closely related to birds (class Aves), members of Dinosauria, than to other living reptiles, and thus birds are nested among reptiles from a phylogenetic perspective. Many cladistic systems therefore redefine Reptilia as a clade (monophyletic group) including birds, though the precise definition of this clade varies between authors. A similar concept is clade Sauropsida, which refers to all amniotes more closely related to modern reptiles than to mammals.

View the full Wikipedia page for Reptile
↑ Return to Menu

Taxonomy in the context of Monophyletic

In biological cladistics for the classification of organisms, monophyly is the condition of a taxonomic grouping being a clade – that is, a grouping of organisms which meets these criteria:

  1. the grouping contains its own most recent common ancestor (or more precisely an ancestral population), i.e. excludes non-descendants of that common ancestor
  2. the grouping contains all the descendants of that common ancestor, without exception

Monophyly is contrasted with paraphyly and polyphyly as shown in the second diagram. A paraphyletic grouping meets 1. but not 2., thus consisting of the descendants of a common ancestor, excepting one or more monophyletic subgroups. A polyphyletic grouping meets neither criterion, and instead serves to characterize convergent relationships of biological features rather than genetic relationships – for example, night-active primates, fruit trees, or aquatic insects. As such, these characteristic features of a polyphyletic grouping are not inherited from a common ancestor, but evolved independently.

View the full Wikipedia page for Monophyletic
↑ Return to Menu

Taxonomy in the context of Fungicide

Fungicides are pesticides used to kill parasitic fungi or their spores. Fungi can cause serious damage in agriculture, resulting in losses of yield and quality. Fungicides are used both in agriculture and to fight fungal infections in animals, including humans. Fungicides are also used to control oomycetes, which are not taxonomically/genetically fungi, although sharing similar methods of infecting plants. Fungicides can either be contact, translaminar or systemic. Contact fungicides are not taken up into the plant tissue and protect only the plant where the spray is deposited. Translaminar fungicides redistribute the fungicide from the upper, sprayed leaf surface to the lower, unsprayed surface. Systemic fungicides are taken up and redistributed through the xylem vessels. Few fungicides move to all parts of a plant. Some are locally systemic, and some move upward.

Most fungicides that can be bought retail are sold in liquid form, the active ingredient being present at 0.08% in weaker concentrates, and as high as 0.5% for less potent fungicides. Fungicides in powdered form are usually around 90% sulfur.

View the full Wikipedia page for Fungicide
↑ Return to Menu

Taxonomy in the context of Juniper

Junipers are coniferous trees and shrubs in the genus Juniperus (/ˈnɪpərəs/ joo-NIP-ər-əs) of the cypress family Cupressaceae. Depending on the taxonomy, between 50 and 67 species of junipers are widely distributed throughout the Northern Hemisphere as far south as tropical Africa, as far north as the Arctic, and parts of Asia and Central America. The highest-known juniper forest occurs at an altitude of 4,900 metres (16,100 ft) in southeastern Tibet and the northern Himalayas, creating one of the highest tree lines on earth.

View the full Wikipedia page for Juniper
↑ Return to Menu

Taxonomy in the context of Paraphilia

A paraphilia is an uncommon, intense, and persistent sexual arousal or attraction to anything not sexual by nature. It has also been defined as a sexual interest in anything other than a legally consenting human partner. Paraphilias are contrasted with normophilic ("normal") sexual interests, although the definition of what makes a sexual interest normal or atypical remains controversial.

The exact number and taxonomy of paraphilia is under debate; Anil Aggrawal has listed as many as 549 types of paraphilias. Several sub-classifications of paraphilia have been proposed; some argue that a fully dimensional, spectrum, or complaint-oriented approach would better reflect the evident diversity of human sexuality. Although paraphilias were believed in the 20th century to be rare among the general population, subsequent research has indicated that some level of paraphilic interests are relatively common.

View the full Wikipedia page for Paraphilia
↑ Return to Menu

Taxonomy in the context of Classification scheme

In information science and ontology, a classification scheme is an arrangement of classes or groups of classes. The activity of developing the schemes bears similarity to taxonomy, but with perhaps a more theoretical bent, as a single classification scheme can be applied over a wide semantic spectrum while taxonomies tend to be devoted to a single topic.

In the abstract, the resulting structures are a crucial aspect of metadata, often represented as a hierarchical structure and accompanied by descriptive information of the classes or groups. Such a classification scheme is intended to be used for the classification of individual objects into the classes or groups, and the classes or groups are based on characteristics which the objects (members) have in common.

View the full Wikipedia page for Classification scheme
↑ Return to Menu

Taxonomy in the context of Dingo

The dingo (either included in the species Canis familiaris, or considered one of the following independent taxa: Canis familiaris dingo, Canis dingo, or Canis lupus dingo) is an ancient (basal) lineage of dog found in Australia. Its taxonomic classification is debated as indicated by the variety of scientific names presently applied in different publications. It is variously considered a form of domestic dog not warranting recognition as a subspecies, a subspecies of dog or wolf, or a full species in its own right.

The dingo is a medium-sized canine that possesses a lean, hardy body adapted for speed, agility, and stamina. The dingo's three main coat colourations are light ginger or tan, black and tan, or creamy white. The skull is wedge-shaped and appears large in proportion to the body. The dingo is closely related to the New Guinea singing dog: their lineage split early from the lineage that led to today's domestic dogs, and can be traced back through Maritime Southeast Asia to Asia. The oldest remains of dingoes discovered in Australia are around 3,500 years old.

View the full Wikipedia page for Dingo
↑ Return to Menu

Taxonomy in the context of Plants of the World Online

Plants of the World Online (POWO) is an online taxonomic database published by the Royal Botanic Gardens, Kew.

View the full Wikipedia page for Plants of the World Online
↑ Return to Menu

Taxonomy in the context of Synonym (taxonomy)

In taxonomy, a synonym is one of two or more scientific names that apply to the same taxon. The botanical and zoological codes of nomenclature treat the concept of synonymy differently.

  • In botanical nomenclature, a synonym is a scientific name that applies to a taxon that now goes by a different scientific name. For example, Linnaeus was the first to give a scientific name (under the currently used system of scientific nomenclature) to the Norway spruce, which he called Pinus abies. This name is no longer in use, so it is now a synonym of the current scientific name, Picea abies.
  • In zoology, moving a species from one genus to another results in a different binomen, but the name is considered an alternative combination rather than a synonym. The concept of synonymy in zoology is reserved for two names at the same rank that refers to a taxon at that rank – for example, the name Papilio prorsa Linnaeus, 1758 is a junior synonym of Papilio levana Linnaeus, 1758, being names for different seasonal forms of the species now referred to as Araschnia levana (Linnaeus, 1758), the map butterfly. However, Araschnia levana is not a synonym of Papilio levana in the taxonomic sense employed by the Zoological code.

Unlike synonyms in other contexts, in taxonomy a synonym is not interchangeable with the name of which it is a synonym. In taxonomy, synonyms are not equals, but have a different status. For any taxon with a particular circumscription, position, and rank, only one scientific name is considered to be the correct one at any given time (this correct name is to be determined by applying the relevant code of nomenclature). A synonym cannot exist in isolation: it is always an alternative to a different scientific name. Given that the correct name of a taxon depends on the taxonomic viewpoint used (resulting in a particular circumscription, position and rank) a name that is one taxonomist's synonym may be another taxonomist's correct name (and vice versa).

View the full Wikipedia page for Synonym (taxonomy)
↑ Return to Menu

Taxonomy in the context of Neopterygii

Neopterygii (from Ancient Greek νέος (néos), meaning "new", and πτέρυξ (ptérux), meaning "wing, fin") is a subclass of ray-finned fish (Actinopterygii). Neopterygii includes the Holostei and the Teleostei, of which the latter comprise the vast majority of extant fishes, and over half of all living vertebrate species. While living holosteans include only freshwater taxa, teleosts are diverse in both freshwater and marine environments. Many new species of teleosts are scientifically described each year.

The potentially oldest known neopterygian is the putative "semionotiform" Acentrophorus varians from the Middle Permian of Russia; however, one study incorporating morphological data from fossils and molecular data from nuclear and mitochondrial DNA, places this divergence date at least 284 mya (million years ago), during the Artinskian stage of the Early Permian. Another study suggests an even earlier split (360 myr ago, near the Devonian-Carboniferous boundary).

View the full Wikipedia page for Neopterygii
↑ Return to Menu

Taxonomy in the context of Rauisuchian

"Rauisuchia" is a paraphyletic group of mostly large and carnivorous Triassic archosaurs. Rauisuchians are a category of archosaurs within a larger group called Pseudosuchia, which encompasses all archosaurs more closely related to crocodilians than to birds and other dinosaurs. First named in the 1940s, Rauisuchia was a name exclusive to Triassic archosaurs which were generally large (often 4 to 6 metres (13 to 20 ft)), carnivorous, and quadrupedal with a pillar-erect hip posture, though exceptions exist for all of these traits. Rauisuchians, as a traditional taxonomic group, were considered distinct from other Triassic archosaur groups such as early dinosaurs, phytosaurs (crocodile-like carnivores), aetosaurs (armored herbivores), and crocodylomorphs (lightly-built crocodilian ancestors).

However, more recent studies on archosaur evolution have upended this idea based on phylogenetic analyses and cladistics, a modern approach to taxonomy based on clades (nested monophyletic groups of common ancestry). Since the early 2010s, archosaur classification schemes have stabilized on a system where Rauisuchia is rendered an evolutionary grade, or even a wastebin taxon. Crocodylomorphs most likely originated from a rauisuchian ancestor based on a myriad of shared traits, and some "rauisuchians" (such as Postosuchus and Rauisuchus) appear to be more closely related to crocodylomorphs than to other "rauisuchians" (such as Prestosuchus and Saurosuchus).

View the full Wikipedia page for Rauisuchian
↑ Return to Menu

Taxonomy in the context of Archosauriformes

Archosauriformes (Greek for 'ruling lizards', and Latin for 'form') is a clade of diapsid reptiles encompassing archosaurs and some of their close relatives. It was defined by Jacques Gauthier (1994) as the clade stemming from the last common ancestor of Proterosuchidae and Archosauria. Phil Senter (2005) defined it as the most exclusive clade containing Proterosuchus and Archosauria. Gauthier as part of the Phylonyms (2020) defined the clade as the last common ancestor of Gallus, Alligator, and Proterosuchus, and all its descendants. Archosauriforms are a branch of archosauromorphs which originated in the Late Permian (roughly 252 million years ago) and persist to the present day as the two surviving archosaur groups: crocodilians and birds.

Archosauriforms present several traits historically ascribed to the group Archosauria. These include serrated teeth set in deep sockets, a more active metabolism, and an antorbital fenestra (a hole in the skull in front of the eyes). Reptiles with these traits have also been termed "thecodonts" in older methods of classification. Thecodontia is a paraphyletic group, and its usage as a taxonomic category has been rejected under modern cladistic systems. The name Archosauriformes is intended as a monophyletic replacement compatible with modern taxonomy.

View the full Wikipedia page for Archosauriformes
↑ Return to Menu