Takeoff in the context of "Space vehicle"

Play Trivia Questions online!

or

Skip to study material about Takeoff in the context of "Space vehicle"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Takeoff in the context of Range (aeronautics)

The maximal total range is the maximum distance an aircraft can fly between takeoff and landing. Powered aircraft range is limited by the aviation fuel energy storage capacity (chemical or electrical) considering both weight and volume limits. Unpowered aircraft range depends on factors such as cross-country speed and environmental conditions. The range can be seen as the cross-country ground speed multiplied by the maximum time in the air. The fuel time limit for powered aircraft is fixed by the available fuel (considering reserve fuel requirements) and rate of consumption.

Some aircraft can gain energy while airborne through the environment (e.g. collecting solar energy or through rising air currents from mechanical or thermal lifting) or from in-flight refueling. These aircraft could theoretically have an infinite range.

↑ Return to Menu

Takeoff in the context of Naval aviation

Naval aviation is the application of military air power by navies, either from warships that can embark aircraft (e.g. aircraft carriers, amphibious assault ships and aircraft cruisers) or from coastal naval air stations.It often involves navalised aircraft, specifically designed for naval use.Seaborne aviation encompasses similar activities not restricted to navies, including marines and coast guards, such as in U.S. naval aviators. As with most army aviation units, naval aviation units are generally separate from a nation's dedicated air force.

Naval aviation operations are typically projected by way of carrier-based aircraft, which must be sturdy enough to withstand the demands of shipborne operations at sea. They must be able to take off from a short runway (typically the flight deck of an aircraft carrier) and be sturdy and flexible enough to come to a sudden stop when landing; they typically have robust folding or swinging wings that reduce the occupied space and thus allow more of them to be stored in below-decks hangars and limited parking spaces on flight decks. These aircraft are designed for many tactical purposes, including aerial combat, airstrike/close air support, anti-submarine warfare, early warning, search and rescue, matériel transport, weather observation, patrol and reconnaissance, and wide-area command and control duties.

↑ Return to Menu

Takeoff in the context of Seaplane

A seaplane is a powered fixed-wing aircraft capable of taking off and landing (alighting) on water. Seaplanes are usually divided into two categories based on their technological characteristics: floatplanes and flying boats; the latter are generally far larger and can carry far more. Seaplanes that can also take off and land on airfields are in a subclass called amphibious aircraft, or amphibians. Seaplanes were sometimes called hydroplanes, but currently this term applies instead to motor-powered watercraft that use the technique of hydrodynamic lift to skim the surface of water when running at speed.

The use of seaplanes gradually tapered off after World War II, partially because of the investments in airports during the war but mainly because landplanes were less constrained by weather conditions that could result in sea states being too high to operate seaplanes while landplanes could continue to operate. In the 21st century, seaplanes maintain a few niche uses, such as for aerial firefighting, air transport around archipelagos, and access to undeveloped or roadless areas, some of which have numerous lakes. In British English, seaplane is sometimes used specifically to refer to a floatplane, rather than a flying boat.

↑ Return to Menu

Takeoff in the context of Runway

In aviation, a runway is an elongated, rectangular surface designed for the landing and takeoff of an aircraft. Runways may be a human-made surface (often asphalt, concrete, or a mixture of both) or a natural surface (grass, dirt, gravel, ice, sand or salt). Runways, taxiways and ramps, are sometimes referred to as "tarmac", though very few runways are built using tarmac. Takeoff and landing areas defined on the surface of water for seaplanes are generally referred to as waterways. Runway lengths are now commonly given in meters worldwide, except in North America where feet are commonly used.

↑ Return to Menu

Takeoff in the context of Aerial refueling

Aerial refueling (en-US), or aerial refuelling (en-GB), also referred to as air refueling, in-flight refueling (IFR), air-to-air refueling (AAR), and tanking, is the process of transferring aviation fuel from one aircraft (the tanker) to another (the receiver) while both aircraft are in flight. The two main refueling systems are probe-and-drogue, which is simpler to adapt to existing aircraft and the flying boom, which offers faster fuel transfer, but requires a dedicated boom operator station.

The procedure allows the receiving aircraft to remain airborne longer, extending its range or loiter time. A series of air refuelings can give range limited only by crew fatigue/physical needs and engineering factors such as engine oil consumption. Because the receiver aircraft is topped-off with extra fuel in the air, air refueling can allow a takeoff with a greater payload which could be weapons, cargo, or personnel: the maximum takeoff weight is maintained by carrying less fuel and topping up once airborne. Aerial refueling has also been considered as a means to reduce fuel consumption on long-distance flights greater than 3,000 nautical miles (5,600 km; 3,500 mi). Potential fuel savings in the range of 35–40% have been estimated for long-haul flights (including the fuel used during the tanker missions).

↑ Return to Menu

Takeoff in the context of Aircraft catapult

An aircraft catapult is an acceleration device used to help fixed-wing aircraft reach liftoff speed (VLOF) faster during takeoff, typically when trying to take off from a very short runway, as otherwise the aircraft engines alone cannot get the aircraft to sufficient airspeed quickly enough for the wings to generate the lift needed to sustain flight. Launching via catapults enables aircraft that typically are only capable of conventional takeoffs, especially heavier aircraft with significant payloads, to perform short takeoffs from the roll distances of light aircraft. Catapults are usually used on the deck of a ship — such as the flight deck of an aircraft carrier — as a form of assisted takeoff for navalised aircraft, but can also be installed on land-based runways, although this is rare.

Historically it was most common for seaplanes (which have pontoons instead of wheeled landing gears and thus cannot utilize runways) to be catapulted from ships onto nearby water for takeoff, allowing them to conduct aerial reconnaissance missions and be crane-hoisted back on board during retrieval, although by the late First World War their roles are largely supplanted by the more versatile biplanes that can take off and land on carrier decks unassisted. During the Second World War before the advent of escort carriers, monoplane fighter aircraft (notably the Hawker Hurricane) would sometimes be catapulted from "catapult-equipped merchant" (CAM) vessels for one-way sorties to repel enemy aircraft harassing shipping lanes, forcing the returning pilot to either divert to a land-based airstrip, jump out by parachute, or ditch in the water near the convoy and wait for rescue. By the time fleet carriers became the norm in WW2, catapult launches have become largely unnecessary and carrier-based fighter-bombers would routinely perform self-powered takeoffs and landings off and onto carrier decks, especially during the naval aviation-dominated Pacific War between the United States and the Empire of Japan. However, escalating arms races during the Cold War accelerated the adoption of the heavier jet aircraft for naval operations, thus motivating the development of new catapult systems, especially after the popularization of angled flight decks further limited the practical distance available as takeoff runways. Nowadays, jet aircraft can launch from aircraft carriers via either catapults or ski-jump deck, and perform optics-assisted landing onto the same ship with help from decelerative arresting gears.

↑ Return to Menu

Takeoff in the context of Landing

Landing is the last part of a flight, where a flying animal, aircraft, or spacecraft returns to the ground. When the flying object returns to water, the process is called alighting, although it is commonly called "landing", "touchdown" or "splashdown" as well. A normal aircraft flight would include several parts of flight including taxi, takeoff, climb, cruise, descent and landing.

↑ Return to Menu

Takeoff in the context of Landing gear

Landing gear is the undercarriage of an aircraft or spacecraft that is used for engaging the surface — typically land, but may also be the surface of a water body — when parking, taxiing, takeoff or landing. It was also formerly called alighting gear by some manufacturers, such as the Glenn L. Martin Company. For aircraft, Stinton makes the terminology distinction undercarriage (British) = landing gear (US).

For aircraft, landing gear is the foundational part of airframe that supports the craft's weight when it is not in flight, keeping the fuselage at a clearance off the ground so it can avoid sustaining frictional/collisional damages. Wheeled landing gear is the most ubiquitous, used in almost all aircraft that perform conventional and short takeoff and landing, while skids or floats are used in aircraft that can take off and land vertically or operate from snow/ice/water. Landing gears from early aircraft are usually fixed, and remain protruded under the aircraft during flight, with no or only partial fairing coverage to reduce drag; while most modern aircraft have retractable undercarriages that fold into the fuselage during flight, which maximizes aerodynamic streamlining and allows for faster airspeeds and smoother flight control.

↑ Return to Menu

Takeoff in the context of Heavy bomber

Heavy bombers are bomber aircraft capable of delivering the largest payload of air-to-ground weaponry (usually bombs) and longest range (takeoff to landing) of their era. Archetypal heavy bombers have therefore usually been among the largest and most powerful military aircraft at any point in time. In the second half of the 20th century, heavy bombers were largely superseded by strategic bombers, which were often even larger in size, had much longer ranges and were capable of delivering nuclear bombs.

Because of advances in aircraft design and engineering — especially in powerplants and aerodynamics — the size of payloads carried by heavy bombers has increased at rates greater than increases in the size of their airframes. The largest bombers of World War I, the Riesenflugzeuge of Germany, could carry a payload of up to 4,400 pounds (2,000 kg) of bombs; by the latter half of World War II, the Avro Lancaster (introduced in 1942) routinely delivered payloads of 14,000 pounds (6,400 kg) (and sometimes up to 22,000 lb (10,000 kg)) and had a range of 2,530 miles (4,070 km), while the B-29 (1944) delivered payloads in excess of 20,000 pounds (9,100 kg) and had a range of 3,250 miles (5,230 km). By the late 1950s, the jet-powered Boeing B-52 Stratofortress, travelling at speeds of up to 650 miles per hour (1,050 km/h) (more than double that of a Lancaster), could deliver a payload of 70,000 pounds (32,000 kg), over a combat radius of 4,480 miles (7,210 km).

↑ Return to Menu