Synaptic potential refers to the potential difference across the postsynaptic membrane that results from the action of neurotransmitters at a neuronal synapse. In other words, it is the "incoming" signal that a neuron receives. There are two forms of synaptic potential: excitatory and inhibitory. The type of potential produced depends on both the postsynaptic receptor, more specifically the changes in conductance of ion channels in the post synaptic membrane, and the nature of the released neurotransmitter. Excitatory post-synaptic potentials (EPSPs) depolarize the membrane and move the potential closer to the threshold for an action potential to be generated. Inhibitory postsynaptic potentials (IPSPs) hyperpolarize the membrane and move the potential farther away from the threshold, decreasing the likelihood of an action potential occurring. The Excitatory Post Synaptic potential is most likely going to be carried out by the neurotransmitters glutamate and acetylcholine, while the Inhibitory post synaptic potential will most likely be carried out by the neurotransmitters gamma-aminobutyric acid (GABA) and glycine. In order to depolarize a neuron enough to cause an action potential, there must be enough EPSPs to both depolarize the postsynaptic membrane from its resting membrane potential to its threshold and counterbalance the concurrent IPSPs that hyperpolarize the membrane. As an example, consider a neuron with a resting membrane potential of -70 mV (millivolts) and a threshold of -50 mV. It will need to be raised 20 mV in order to pass the threshold and fire an action potential. The neuron will account for all the many incoming excitatory and inhibitory signals via summative neural integration, and if the result is an increase of 20 mV or more, an action potential will occur.
Both EPSP and IPSPs generation is contingent upon the release of neurotransmitters from a terminal button of the presynaptic neuron. The first phase of synaptic potential generation is the same for both excitatory and inhibitory potentials. As an action potential travels through the presynaptic neuron, the membrane depolarization causes voltage-gated calcium channels to open. Consequently, calcium ions flow into the cell, promoting neurotransmitter-filled vesicles to travel down to the terminal button. These vesicles fuse with the membrane, releasing the neurotransmitter into the synaptic cleft. The released neurotransmitter then binds to its receptor on the postsynaptic neuron causing an excitatory or inhibitory response. EPSPs on the postsynaptic neuron result from the main excitatory neurotransmitter, glutamate, binding to its corresponding receptors on the postsynaptic membrane. By contrast, IPSPs are induced by the binding of GABA(gamma-aminobutyric acid), or glycine.
View the full Wikipedia page for Synaptic potential