Swim bladder in the context of "Elasmobranch"

Play Trivia Questions online!

or

Skip to study material about Swim bladder in the context of "Elasmobranch"

Ad spacer

⭐ Core Definition: Swim bladder

The swim bladder, gas bladder, fish maw, air bladder or sound is an internal gas-filled organ in bony fish that functions to modulate buoyancy, and thus allowing the fish to stay at desired water depth without having to maintain lift via swimming, which expends more energy. Also, the dorsal position of the swim bladder means that the expansion of the bladder moves the center of mass downwards, allowing it to act as a stabilizing apparatus. Additionally, the swim bladder functions as a resonating chamber to produce or receive sound.

The swim bladder is evolutionarily homologous to the lungs of tetrapods and lungfish, and some ray-finned fish such as bowfins have also evolved similar respiratory functions in their swim bladders. Charles Darwin remarked upon this in On the Origin of Species, and reasoned that the lung in air-breathing vertebrates had derived from a more primitive swim bladder as a specialized form of enteral respiration.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Swim bladder in the context of Elasmobranch

Elasmobranchii (/ɪˌlæzməˈbræŋki/) is a subclass of Chondrichthyes or cartilaginous fish, including modern sharks (division Selachii), and batomorphs (division Batomorphi, including rays, skates, and sawfish). Members of this subclass are characterised by having five to seven pairs of gill slits opening individually to the exterior, rigid dorsal fins and small placoid scales on the skin. The teeth are in several series; the upper jaw is not fused to the cranium, and the lower jaw is articulated with the upper. The details of this jaw anatomy vary between species, and help distinguish the different elasmobranch clades. The pelvic fins in males are modified to create claspers for the transfer of sperm. There is no swim bladder; instead, these fish maintain buoyancy with large livers rich in oil.

The definition of the clade is unclear with respect to fossil chondrichthyans. Some authors consider it as equivalent to Neoselachii (the crown group clade including modern sharks, rays, and all other descendants of their last common ancestor). Other authors use the name Elasmobranchii for a broader branch-based group of all chondrichthyans more closely related to modern sharks and rays than to Holocephali (the clade containing chimaeras and their extinct relatives). Important extinct groups of elasmobranchs sensu lato include the hybodonts (Order Hybodontiformes), xenacanths (order Xenacanthformes) and Ctenacanthiformes. These are also often referred to as "sharks" in reference to their similar anatomy and ecology to modern sharks.

↓ Explore More Topics
In this Dossier

Swim bladder in the context of Bony fish

Osteichthyes (/ˌɒstˈɪkθz/ ost-ee-IK-theez; from Ancient Greek ὀστέον (ostéon) 'bone' and ἰχθύς (ikhthús) 'fish'), also known as osteichthyans or commonly referred to as the bony fish, is a diverse clade of vertebrate animals that have endoskeletons primarily composed of bone tissue. They can be contrasted with the Chondrichthyes (cartilaginous fish) and the extinct placoderms and acanthodians, which have endoskeletons primarily composed of cartilage. The vast majority of extant fish are members of Osteichthyes, being an extremely diverse and abundant group consisting of 45 orders, over 435 families and 28,000 species.

The group is divided into two main clades, the ray-finned fish (Actinopterygii, which makes up the vast majority of extant fish) and the lobe-finned fish (Sarcopterygii, which gave rise to all land vertebrates, i.e. tetrapods). The oldest known fossils of bony fish are about 425 million years old from the late Silurian, which are also transitional fossils showing a tooth pattern that is in between the tooth rows of sharks and true bony fishes. Despite the name, these early basal bony fish had not yet evolved ossification and their skeletons were still mostly cartilaginous, and the main distinguishing feature that set them apart from other fish clades were the development of foregut pouches that eventually evolved into the swim bladders and lungs, respectively.

↑ Return to Menu

Swim bladder in the context of Cartilaginous fish

Chondrichthyes (/kɒnˈdrɪkθiz/; from Ancient Greek χόνδρος (khóndros) 'cartilage' and ἰχθύς (ikhthús) 'fish') is a class of jawed fish that contains the cartilaginous fish or chondrichthyans, which all have skeletons primarily composed of cartilage. They can be contrasted with the Osteichthyes or bony fish, which have skeletons primarily composed of bone tissue. Chondrichthyes are aquatic vertebrates with paired fins, paired nares, placoid scales, conus arteriosus in the heart, and a lack of opercula and swim bladders. Within the infraphylum Gnathostomata, cartilaginous fishes are distinct from all other jawed vertebrates.

The class is divided into two subclasses: Elasmobranchii (sharks, rays, skates and sawfish) and Holocephali (chimaeras, sometimes called ghost sharks, which are sometimes separated into their own class). Extant chondrichthyans range in size from the 10 cm (3.9 in) finless sleeper ray to the over 10 m (33 ft) whale shark.

↑ Return to Menu

Swim bladder in the context of Amphibious fish

Amphibious fish are fish that are able to leave water for extended periods of time. About 11 distantly related genera of fish are considered amphibious. This suggests that many fish genera independently evolved amphibious traits, a process known as convergent evolution. These fish use a range of methods for land movement, such as lateral undulation, tripod-like walking (using paired fins and tail), and jumping. Many of these methods of locomotion incorporate multiple combinations of pectoral-, pelvic-, and tail-fin movement.

Many ancient fish had lung-like organs, and a few, such as the lungfish and bichir, still do. Some of these ancient "lunged" fish were the ancestors of tetrapods. In most recent fish species, though, these organs evolved into the swim bladders, which help control buoyancy. Having no lung-like organs, modern amphibious fish and many fish in oxygen-poor water use other methods, such as their gills or their skin to breathe air. Amphibious fish may also have eyes adapted to allow them to see clearly in air, despite the refractive index differences between air and water.

↑ Return to Menu

Swim bladder in the context of Gar

Gars are an ancient group of ray-finned fish in the family Lepisosteidae. They comprise seven living species of fish in two genera that inhabit fresh, brackish, and occasionally marine waters of eastern North America, Central America and Cuba in the Caribbean, though extinct members of the family were more widespread. They are the only surviving members of the Ginglymodi, a clade of fish which first appeared during the Triassic period, over 240 million years ago, and are one of only two surviving groups of holosteian fish, alongside the bowfins, which have a similar distribution.

Gars have elongated bodies that are heavily armored with ganoid scales, and fronted by similarly elongated jaws filled with long, sharp teeth. Gars are sometimes referred to as "garpike", but are not closely related to pike, which are in the fish family Esocidae. All of the gars are relatively large fish, but the alligator gar (Atractosteus spatula) is the largest; the alligator gar often grows to a length over 2 m (6.5 ft) and a weight over 45 kg (100 lb), and specimens of up to 3 m (9.8 ft) in length have been reported. Unusually, their vascularised swim bladders can function as lungs, and most gars surface periodically to take a gulp of air. Gar flesh is edible and the hard skin and scales of gars are used by humans, but gar eggs are highly toxic.

↑ Return to Menu