Swallowing in the context of Peristalsis


Swallowing in the context of Peristalsis

Swallowing Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Swallowing in the context of "Peristalsis"


⭐ Core Definition: Swallowing

Swallowing, also called deglutition or inglutition in scientific and medical contexts, is a physical process of an animal's digestive tract (e.g. that of a human body) that allows for an ingested substance (typically food) to pass from the mouth to the pharynx and then into the esophagus. In colloquial English, the term "swallowing" is also used to describe the action of gulping, i.e. taking in a large mouthful of food without any biting.

Swallowing is performed by an initial push from back part of the tongue (with the tongue tip contacting the hard palate for mechanical anchorage) and subsequent coordinated contractions of the pharyngeal muscles. The portion of food, drink and/or other material (e.g. mucus, secretions and medications) that moves into the gullet in one swallow is called a bolus, which is then propelled through to the stomach for further digestion by autonomic peristalsis of the esophagus.

↓ Menu
HINT:

In this Dossier

Swallowing in the context of Drinking

Drinking is the act of ingesting water or other liquids into the body through the mouth, proboscis, or elsewhere. Humans drink by swallowing, completed by peristalsis in the esophagus. The physiological processes of drinking vary widely among other animals.

Most animals drink water to maintain bodily hydration, although many can survive on the water gained from their food. Water is required for many physiological processes. Both inadequate and (less commonly) excessive water intake are associated with health problems.

View the full Wikipedia page for Drinking
↑ Return to Menu

Swallowing in the context of Human digestive system

The human digestive system consists of the gastrointestinal tract plus the accessory organs of digestion (the tongue, salivary glands, pancreas, liver, and gallbladder). Digestion involves the breakdown of food into smaller and smaller components, until they can be absorbed and assimilated into the body. The process of digestion has three stages: the cephalic phase, the gastric phase, and the intestinal phase.

The first stage, the cephalic phase of digestion, begins with secretions from gastric glands in response to the sight and smell of food, and continues in the mouth with the mechanical breakdown of food by chewing, and the chemical breakdown by digestive enzymes in the saliva. Saliva contains amylase, and lingual lipase, secreted by the salivary glands, and serous glands on the tongue. Chewing mixes the food with saliva to produce a bolus to be swallowed down the esophagus to enter the stomach. The second stage, the gastric phase, takes place in the stomach, where the food is further broken down by mixing with gastric juice until it passes into the duodenum, the first part of the small intestine. The intestinal phase where the partially digested food is mixed with pancreatic digestive enzymes completes the process of digestion.

View the full Wikipedia page for Human digestive system
↑ Return to Menu

Swallowing in the context of Mouthfeel

Mouthfeel refers to the physical sensations in the mouth caused by food or drink, making it distinct from taste. It is a fundamental sensory attribute which, along with taste and smell, determines the overall flavor of a food item. Mouthfeel is also sometimes referred to as texture.

It is used in many areas related to the testing and evaluating of foodstuffs, such as wine-tasting and food rheology. It is evaluated from initial perception on the palate to first bite, through chewing to swallowing and aftertaste. In wine-tasting, for example, mouthfeel is usually used with a modifier (big, sweet, tannic, chewy, etc.) to the general sensation of the wine in the mouth. Research indicates texture and mouthfeel can also influence satiety with the effect of viscosity most significant.

View the full Wikipedia page for Mouthfeel
↑ Return to Menu

Swallowing in the context of Autonomic nervous system

The autonomic nervous system (ANS), sometimes called the visceral nervous system and formerly the vegetative nervous system, is a division of the nervous system that operates internal organs, smooth muscle and glands. The autonomic nervous system is a control system that acts largely unconsciously and regulates bodily functions, such as the heart rate, its force of contraction, digestion, respiratory rate, pupillary response, urination, and sexual arousal. The fight-or-flight response, also known as the acute stress response, is set into action by the autonomic nervous system.

The autonomic nervous system is regulated by integrated reflexes through the brainstem to the spinal cord and organs. These functions include control of respiration, cardiac regulation, vasomotor activity, and certain reflex actions such as coughing, sneezing, swallowing and vomiting. Those are then subdivided into other areas and are also linked to autonomic subsystems and the peripheral nervous system. The hypothalamus, just above the brain stem, acts as an integrator for autonomic functions, receiving autonomic regulatory input from the limbic system.

View the full Wikipedia page for Autonomic nervous system
↑ Return to Menu

Swallowing in the context of Fluoroscopy

Fluoroscopy (/flʊəˈrɒskəpi/), informally referred to as "fluoro", is an imaging technique that uses X-rays to obtain real-time moving images of the interior of an object. In its primary application of medical imaging, a fluoroscope (/ˈflʊərəˌskp/) allows a surgeon to see the internal structure and function of a patient, so that the pumping action of the heart or the motion of swallowing, for example, can be watched. This is useful for both diagnosis and therapy and occurs in general radiology, interventional radiology, and image-guided surgery.

In its simplest form, a fluoroscope consists of an X-ray source and a fluorescent screen, between which a patient is placed. However, since the 1950s most fluoroscopes have included X-ray image intensifiers and cameras as well, to improve the image's visibility and make it available on a remote display screen. For many decades, fluoroscopy tended to produce live pictures that were not recorded, but since the 1960s, as technology improved, recording and playback became the norm.

View the full Wikipedia page for Fluoroscopy
↑ Return to Menu

Swallowing in the context of Saliva

Saliva (commonly referred as spit or drool) is an extracellular fluid produced and secreted by salivary glands in the mouth. In humans, saliva is around 99% water, plus electrolytes, mucus, white blood cells, epithelial cells (from which DNA can be extracted), enzymes (such as lingual lipase and amylase), and antimicrobial agents (such as secretory IgA, and lysozymes).

The enzymes found in saliva are essential in beginning the process of digestion of dietary starches and fats. These enzymes also play a role in breaking down food particles trapped within dental crevices, thus protecting teeth from bacterial decay. Saliva also performs a lubricating function, wetting food and permitting the initiation of swallowing, and protecting the oral mucosa from drying out.

View the full Wikipedia page for Saliva
↑ Return to Menu

Swallowing in the context of Sword swallowing

Sword swallowing is a skill in which the performer passes a sword through the mouth and down the esophagus to the stomach. This feat is not swallowing in the traditional sense. The natural processes that constitute swallowing do not take place, but are repressed to keep the passage from the mouth to the stomach open for the sword. The practice is dangerous and there is risk of serious injury or death.

View the full Wikipedia page for Sword swallowing
↑ Return to Menu

Swallowing in the context of Epiglottis

The epiglottis (pl.: epiglottises or epiglottides) is a leaf-shaped flap in the throat that prevents food and water from entering the trachea and the lungs. It stays open during breathing, allowing air into the larynx. During swallowing, it closes to prevent aspiration of food into the lungs, forcing the swallowed liquids or food to go along the esophagus toward the stomach instead. It is thus the valve that diverts passage to either the trachea or the esophagus.

The epiglottis is made of elastic cartilage covered with a mucous membrane, attached to the entrance of the larynx. It projects upwards and backwards behind the tongue and the hyoid bone.

View the full Wikipedia page for Epiglottis
↑ Return to Menu

Swallowing in the context of Pharyngeal reflex

The pharyngeal reflex or gag reflex is a reflex muscular contraction of the back of the throat, evoked by touching the roof of the mouth, back of the tongue, area around the tonsils, uvula, and back of the throat. It, along with other aerodigestive reflexes such as reflexive pharyngeal swallowing, prevents objects in the oral cavity from entering the throat except as part of normal swallowing and helps prevent choking, and is a form of coughing. The pharyngeal reflex is different from the laryngeal spasm, which is a reflex muscular contraction of the vocal cords.

View the full Wikipedia page for Pharyngeal reflex
↑ Return to Menu

Swallowing in the context of Eustachian tube

The Eustachian tube (/jˈstʃən/), also called the auditory tube or pharyngotympanic tube, is a tube that links the nasopharynx to the middle ear, of which it is also a part. In adult humans, the Eustachian tube is approximately 35 mm (1.4 in) long and 3 mm (0.12 in) in diameter. It is named after the sixteenth-century Italian anatomist Bartolomeo Eustachi.

In humans and other tetrapods, both the middle ear and the ear canal are normally filled with air. Unlike the air of the ear canal, however, the air of the middle ear is not in direct contact with the atmosphere outside the body; thus, a pressure difference can develop between the atmospheric pressure of the ear canal and the middle ear. Normally, the Eustachian tube is collapsed, but it gapes open with swallowing and with positive pressure, allowing the middle ear's pressure to adjust to the atmospheric pressure. When taking off in an aircraft, the ambient air pressure goes from higher (on the ground) to lower (in the sky). The air in the middle ear expands as the plane gains altitude, and pushes its way into the back of the nose and mouth; on the way down, the volume of air in the middle ear shrinks, and a slight vacuum is produced. Active opening of the Eustachian tube (through actions like swallowing or the Valsalva maneuver) is required to equalize the pressure between the middle ear and the ambient atmosphere as the plane descends. A diver also experiences this change in pressure, but with greater rates of pressure change; active opening of the Eustachian tube is required more frequently to equalize pressure as the diver goes deeper, into higher pressure.

View the full Wikipedia page for Eustachian tube
↑ Return to Menu

Swallowing in the context of Barium swallow

An upper gastrointestinal series, also called a barium swallow, barium study, or barium meal, is a series of radiographs used to examine the gastrointestinal tract for abnormalities. A contrast medium, usually a radiocontrast agent such as barium sulfate mixed with water, is ingested or instilled into the gastrointestinal tract, and X-rays are used to create radiographs of the regions of interest. The barium enhances the visibility of the relevant parts of the gastrointestinal tract by coating the inside wall of the tract and appearing white on the film. This in combination with other plain radiographs allows for the imaging of parts of the upper gastrointestinal tract such as the pharynx, larynx, esophagus, stomach, and small intestine such that the inside wall lining, size, shape, contour, and patency are visible to the examiner. With fluoroscopy, it is also possible to visualize the functional movement of examined organs such as swallowing, peristalsis, or sphincter closure. Depending on the organs to be examined, barium radiographs can be classified into "barium swallow", "barium meal", "barium follow-through", and "enteroclysis" ("small bowel enema"). To further enhance the quality of images, air or gas is sometimes introduced into the gastrointestinal tract in addition to barium, and this procedure is called double-contrast imaging. In this case the gas is referred to as the negative contrast medium. Traditionally the images produced with barium contrast are made with plain-film radiography, but computed tomography is also used in combination with barium contrast, in which case the procedure is called "CT enterography".

View the full Wikipedia page for Barium swallow
↑ Return to Menu