Supersonic speed in the context of Dew point


Supersonic speed in the context of Dew point

Supersonic speed Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Supersonic speed in the context of "Dew point"


⭐ Core Definition: Supersonic speed

Supersonic speed is the speed of an object that exceeds the speed of sound (Mach 1). For objects traveling in dry air of a temperature of 20 °C (68 °F) at sea level, this speed is approximately 343.2 m/s (1,126 ft/s; 768 mph; 667.1 kn; 1,236 km/h). Speeds greater than five times the speed of sound (Mach 5) are often referred to as hypersonic. Flights during which only some parts of the air surrounding an object, such as the ends of rotor blades, reach supersonic speeds are called transonic. This occurs typically somewhere between Mach 0.8 and Mach 1.2.

Sounds are traveling vibrations in the form of pressure waves in an elastic medium. Objects move at supersonic speed when the objects move faster than the speed at which sound propagates through the medium. In gases, sound travels longitudinally at different speeds, mostly depending on the molecular mass and temperature of the gas, and pressure has little effect. Since air temperature and composition varies significantly with altitude, the speed of sound, and Mach numbers for a steadily moving object may change. In water at room temperature, supersonic speed means any speed greater than 1,440 m/s (4,724 ft/s). In solids, sound waves can be polarized longitudinally or transversely and have higher velocities.

↓ Menu
HINT:

In this Dossier

Supersonic speed in the context of Shockwave

In physics, a shock wave (also spelled shockwave), or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a medium, but is characterized by an abrupt, nearly discontinuous, change in pressure, temperature, and density of the medium.

For the purpose of comparison, in supersonic flows, additional increased expansion may be achieved through an expansion fan, also known as a Prandtl–Meyer expansion fan. The accompanying expansion wave may approach and eventually collide and recombine with the shock wave, creating a process of destructive interference. The sonic boom associated with the passage of a supersonic aircraft is a type of sound wave produced by constructive interference.

View the full Wikipedia page for Shockwave
↑ Return to Menu

Supersonic speed in the context of Cruise missile

A cruise missile is an unmanned self-propelled guided missile that sustains flight through aerodynamic lift for most of its flight path. Cruise missiles are designed to deliver a large payload over long distances with high precision. Modern cruise missiles are capable of traveling at high subsonic, supersonic, or hypersonic speeds, are self-navigating, and are able to fly on a non-ballistic, extremely low-altitude trajectory.

View the full Wikipedia page for Cruise missile
↑ Return to Menu

Supersonic speed in the context of Variable-sweep wing

A variable-sweep wing, colloquially known as a "swing wing", is an airplane wing, or set of wings, that may be modified during flight, swept back and then returned to its previous straight position. Because it allows the aircraft's shape to be changed, it is a feature of a variable-geometry aircraft.

A straight wing is most efficient for low-speed flight, but for an aircraft designed for transonic or supersonic flight it is essential that the wing be swept. Most aircraft that travel at those speeds usually have wings (either swept wing or delta wing) with a fixed sweep angle. These are simple and efficient wing designs for high speed flight, but there are performance tradeoffs. One is that the stalling speed is increased, necessitating long runways (unless complex high-lift wing devices are built in). Another is that the aircraft's fuel consumption during subsonic cruise is higher than that of an unswept wing. These tradeoffs are particularly acute for naval carrier-based aircraft. A variable-sweep wing allows the pilot to use the optimum sweep angle for the aircraft's speed at the moment, whether slow or fast. The more efficient sweep angles available offset the weight and volume penalties imposed by the wing's mechanical sweep mechanisms. Its greater complexity and cost make it impractical for most commercial applications and result in its use being primarily for military aircraft.

View the full Wikipedia page for Variable-sweep wing
↑ Return to Menu

Supersonic speed in the context of Kh-32

Kh-32 (Russian: Х-32) is a Russian supersonic air-launched cruise missile with a range of 600–1000 km developed by the MKB Raduga from the Kh-22. The missile was accepted to service in 2016 as armament for the Tu-22M3M bombers.

View the full Wikipedia page for Kh-32
↑ Return to Menu

Supersonic speed in the context of Ramjet

A ramjet is a form of airbreathing jet engine that requires forward motion of the engine to provide air for combustion. Ramjets work most efficiently at supersonic speeds around Mach 3 (2,300 mph; 3,700 km/h) and can operate up to Mach 6 (4,600 mph; 7,400 km/h).

Ramjets can be particularly appropriate in uses requiring a compact mechanism for high speed, such as missiles. Weapons designers are investigating ramjet technology for use in artillery shells to increase range; a 120 mm ramjet-assisted mortar shell is thought to be able to travel 35 km (22 mi). They have been used, though not efficiently, as tip jets on the ends of helicopter rotors.

View the full Wikipedia page for Ramjet
↑ Return to Menu

Supersonic speed in the context of Heavier than air

The history of aviation spans over two millennia, from the earliest innovations like kites and attempts at tower jumping to supersonic and hypersonic flight in powered, heavier-than-air jet aircraft. Kite flying in China, dating back several hundred years BC, is considered the earliest example of man-made flight. In the 15th-century Leonardo da Vinci designed several flying machines incorporating aeronautical concepts, but they were unworkable due to the limitations of contemporary knowledge.

In the late 18th century, the Montgolfier brothers invented the hot-air balloon which soon led to manned flights. At almost the same time, the discovery of hydrogen gas led to the invention of the hydrogen balloon. Various theories in mechanics by physicists during the same period, such as fluid dynamics and Newton's laws of motion, led to the development of modern aerodynamics; most notably by Sir George Cayley. Balloons, both free-flying and tethered, began to be used for military purposes from the end of the 18th century, with France establishing balloon companies during the French Revolution.

View the full Wikipedia page for Heavier than air
↑ Return to Menu

Supersonic speed in the context of F-100 Super Sabre

The North American F-100 Super Sabre was an American supersonic jet fighter aircraft designed and produced by the aircraft manufacturer North American Aviation. The first of the Century Series of American jet fighters, it was the first United States Air Force (USAF) fighter capable of supersonic speed in level flight.

The F-100 was envisioned during the late 1940s as a higher-performance successor to the F-86 Sabre air superiority fighter. Initially referred to as the Sabre 45, it was delivered as an unsolicited proposal to the USAF in January 1951, leading to two prototypes being ordered one year later following modifications. The first YF-100A performed its maiden flight on 25 May 1953, seven months ahead of schedule. Flight testing demonstrated both the F-100's promising performance and several deficiencies, which included its tendency of yaw instability and inertia coupling that led to numerous fatal accidents. On 27 September 1954, the F-100A officially entered USAF service, however, as a result of six major accidents occurred by 10 November 1954, the type was grounded while investigations and remedial work were conducted. The F-100 returned to flight in February 1955.

View the full Wikipedia page for F-100 Super Sabre
↑ Return to Menu

Supersonic speed in the context of Supersonic aircraft

A supersonic aircraft is an aircraft capable of supersonic flight, that is, flying faster than the speed of sound (Mach 1). Supersonic aircraft were developed in the second half of the twentieth century. Supersonic aircraft have been used for research and military purposes; however, to date, only two supersonic aircraft, the Tupolev Tu-144 (first flown on December 31, 1968) and the Concorde (first flown on March 2, 1969), have ever entered service, being commercially used in the civil sector as supersonic passenger airliners. Fighter jets are the most common example of supersonic aircraft.

The aerodynamics of supersonic flight is called compressible flow because of the compression associated with the shock waves or "sonic boom" created by any object traveling faster than the speed of sound.

View the full Wikipedia page for Supersonic aircraft
↑ Return to Menu

Supersonic speed in the context of Rocket engine nozzle

A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.

Simply: propellants pressurized by either pumps or high pressure ullage gas to anywhere between two and several hundred atmospheres are injected into a combustion chamber to burn, and the combustion chamber leads into a nozzle which converts the energy contained in high pressure, high temperature combustion products into kinetic energy by accelerating the gas to high velocity and near-ambient pressure.

View the full Wikipedia page for Rocket engine nozzle
↑ Return to Menu

Supersonic speed in the context of Transonic

Transonic (or transsonic) flow is air flowing around an object at a speed that generates regions of both subsonic and supersonic airflow around that object. The exact range of speeds depends on the object's critical Mach number, but transonic flow is seen at flight speeds close to the speed of sound (343 m/s at sea level), typically between Mach 0.8 and 1.2.

The issue of transonic speed (or transonic region) first appeared during World War II. Pilots found as they approached the sound barrier the airflow caused aircraft to become unsteady. Experts found that shock waves can cause large-scale separation downstream, increasing drag, adding asymmetry and unsteadiness to the flow around the vehicle. Research has been done into weakening shock waves in transonic flight through the use of anti-shock bodies and supercritical airfoils.

View the full Wikipedia page for Transonic
↑ Return to Menu

Supersonic speed in the context of Sound barrier

The sound barrier or sonic barrier is the large increase in aerodynamic drag and other undesirable effects experienced by an aircraft or other object when it approaches the speed of sound. When aircraft first approached the speed of sound, these effects were seen as constituting a barrier, making faster speeds very difficult or impossible. The term sound barrier is still sometimes used today to refer to aircraft approaching supersonic flight in this high drag regime. Flying faster than sound produces a sonic boom.

In dry air at 20 °C (68 °F), the speed of sound is 343 metres per second (about 767 mph, 1234 km/h or 1,125 ft/s). The term came into use during World War II when pilots of high-speed fighter aircraft experienced the effects of compressibility, a number of adverse aerodynamic effects that deterred further acceleration, seemingly impeding flight at speeds close to the speed of sound. These difficulties represented a barrier to flying at faster speeds. In 1947, American test pilot Chuck Yeager demonstrated that safe flight at the speed of sound was achievable in purpose-designed aircraft, thereby breaking the barrier. By the 1950s, new designs of fighter aircraft routinely reached the speed of sound, and faster.

View the full Wikipedia page for Sound barrier
↑ Return to Menu