Supermassive black hole


Supermassive black holes are distinguished from other black holes by their immense mass, ranging from hundreds of thousands to billions of times the mass of our Sun. They are commonly found at the centers of large galaxies, with observational evidence suggesting nearly all such galaxies host one. The accretion of interstellar gas onto these black holes powers extremely luminous phenomena like active galactic nuclei and quasars.

⭐ In the context of galaxies, supermassive black holes are considered…


⭐ Core Definition: Supermassive black hole

A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions, of times the mass of the Sun (M). Black holes are a class of astronomical objects that have undergone gravitational collapse, leaving behind spheroidal regions of space from which nothing can escape, including light. Observational evidence indicates that almost every large galaxy has a supermassive black hole at its center. For example, the Milky Way galaxy has a supermassive black hole at its center, corresponding to the radio source Sagittarius A*. Accretion of interstellar gas onto supermassive black holes is the process responsible for powering active galactic nuclei (AGNs) and quasars.

Two supermassive black holes have been directly imaged by the Event Horizon Telescope: the black hole in the giant elliptical galaxy Messier 87 and the black hole at the Milky Way's center (Sagittarius A*).

↓ Menu
In the context of galaxies, supermassive black holes are considered…
HINT: The immense gravity of a supermassive black hole, combined with infalling matter, creates a highly energetic environment that fuels active galactic nuclei and quasars, making them central to these phenomena.

In this Dossier

Supermassive black hole in the context of Galaxy

A galaxy is a system of stars, stellar remnants, interstellar gas, dust, and dark matter bound together by gravity. The word is derived from the Greek galaxias (γαλαξίας), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. Galaxies, averaging an estimated 100 million stars, range in size from dwarfs with less than a thousand stars, to the largest galaxies knownsupergiants with one hundred trillion stars, each orbiting its galaxy's centre of mass. Most of the mass in a typical galaxy is in the form of dark matter, with only a few per cent of that mass visible in the form of stars and nebulae. Supermassive black holes are a common feature at the centres of galaxies.

Galaxies are categorised according to their visual morphology as elliptical, spiral, or irregular. The Milky Way is an example of a spiral galaxy. It is estimated that there are between 200 billion (2×10) to 2 trillion galaxies in the observable universe. Most galaxies are 1,000 to 100,000 parsecs in diameter (approximately 3,000 to 300,000 light years) and are separated by distances in the order of millions of parsecs (or megaparsecs). For comparison, the Milky Way has a diameter of at least 26,800 parsecs (87,400 ly) and is separated from the Andromeda Galaxy, its nearest large neighbour, by just over 750,000 parsecs (2.5 million ly).

View the full Wikipedia page for Galaxy
↑ Return to Menu

Supermassive black hole in the context of Galactic Center

The Galactic Center is the barycenter of the Milky Way and a corresponding point on the rotational axis of the galaxy. Its central massive object is a supermassive black hole of about 4 million solar masses, which is called Sagittarius A*, part of which is a very compact radio source arising from a bright spot in the region around the black hole, near the event horizon. The Galactic Center is approximately 8 kiloparsecs (26,000 ly) away from Earth in the direction of the constellations Sagittarius, Ophiuchus, and Scorpius, where the Milky Way appears brightest, visually close to the Butterfly Cluster (M6) or the star Lambda Scorpii, south to the Pipe Nebula.

There are around 10 million stars within one parsec of the Galactic Center, dominated by red giants, with a significant population of massive supergiants and Wolf–Rayet stars from star formation in the region around 1 million years ago. The core stars are a small part within the much wider central region, called the galactic bulge.

View the full Wikipedia page for Galactic Center
↑ Return to Menu

Supermassive black hole in the context of Quasar

A quasar (/ˈkwzɑːr/ KWAY-zar) is an extremely luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by accretion onto a supermassive black hole with a mass ranging from millions to tens of billions of solar masses, surrounded by a gaseous accretion disc. Gas in the disc falling towards the black hole heats up and releases energy in the form of electromagnetic radiation. The radiant energy of quasars is enormous; the most powerful quasars have luminosities thousands of times greater than that of a galaxy such as the Milky Way. Quasars are usually categorized as a subclass of the more general category of AGN. The redshifts of quasars are of cosmological origin.

View the full Wikipedia page for Quasar
↑ Return to Menu

Supermassive black hole in the context of Central massive object

A central massive object (CMO) is a high mass object or cluster of objects at the centre of a large star system, such as a galaxy or globular cluster. In the case of the former, the CMO may be a supermassive black hole, a nuclear star cluster, or even both together.

The most massive galaxies are thought to always contain a supermassive black hole (SBH); these galaxies do not contain nuclear star clusters, and the CMO is identified with the SBH. Fainter galaxies usually contain a nuclear star cluster (NSC). In most of these galaxies, it is not known whether a supermassive black hole is present, and the CMO is identified with the NSC. A few galaxies, for instance the Milky Way and NGC 4395, are known to contain both a SBH and a NSC.

View the full Wikipedia page for Central massive object
↑ Return to Menu

Supermassive black hole in the context of Sagittarius A*

Sagittarius A*, abbreviated as Sgr A* (/ˈsæ ˈ stɑːr/ SADGE-AY-star), is the supermassive black hole at the Galactic Center of the Milky Way. Viewed from Earth, it is located near the border of the constellations Sagittarius and Scorpius, about 5.6° south of the ecliptic, visually close to the Butterfly Cluster (M6) and Lambda Scorpii. Sagittarius A* is a bright and very compact astronomical radio source.

In May 2022, astronomers released the first image of the accretion disk around the event horizon of Sagittarius A*, using the Event Horizon Telescope, a world-wide network of radio observatories. This is the second confirmed image of a black hole, after Messier 87's supermassive black hole in 2019. The black hole itself is not seen; as light is incapable of escaping the immense gravitational force of a black hole, only nearby objects whose behavior is influenced by the black hole can be observed. The observed radio and infrared energy emanates from gas and dust heated to millions of degrees while falling into the black hole.

View the full Wikipedia page for Sagittarius A*
↑ Return to Menu

Supermassive black hole in the context of Active galactic nucleus

An active galactic nucleus (AGN) is a compact region at the center of a galaxy that emits a significant amount of energy across the electromagnetic spectrum, with characteristics indicating that this luminosity is not produced by the stars. Such excess, non-stellar emissions have been observed in the radio, microwave, infrared, optical, ultra-violet, X-ray, and gamma ray wavebands. A galaxy hosting an AGN is called an active galaxy. The non-stellar radiation from an AGN is theorized to result from the accretion of matter by a supermassive black hole at the center of its host galaxy. Not every supermassive black hole generates an AGN. For example, our Milky Way galaxy is not an active galaxy even though it has a supermassive black hole in its center.

Active galactic nuclei are the most luminous persistent sources of electromagnetic radiation in the universe and, as such, can be used as a means of discovering distant objects; their evolution as a function of cosmic time also puts constraints on models of the cosmos. The observed characteristics of an AGN depend on several properties such as the mass of the central black hole, the rate of gas accretion onto the black hole, the orientation of the accretion disk, the degree of obscuration of the nucleus by dust, and presence or absence of jets. Numerous subclasses of AGN have been defined on the basis of their observed characteristics; the most powerful AGN are classified as quasars. A blazar is an AGN with a jet pointed toward the Earth, in which radiation from the jet is enhanced by relativistic beaming.

View the full Wikipedia page for Active galactic nucleus
↑ Return to Menu

Supermassive black hole in the context of Elliptical galaxy M87

Messier 87 (also known as Virgo A or NGC 4486, generally abbreviated to M87) is a supergiant elliptical galaxy in the constellation Virgo that contains several trillion stars. One of the largest and most massive galaxies in the local universe, it has a large population of globular clusters—about 15,000 compared with the 150–200 orbiting the Milky Way—and a jet of energetic plasma that originates at the core and extends at least 1,500 parsecs (4,900 light-years), traveling at a relativistic speed. It is one of the brightest radio sources in the sky and a popular target for both amateur and professional astronomers.

The French astronomer Charles Messier discovered M87 in 1781, and cataloged it as a nebula. M87 is about 16.4 million parsecs (53 million light-years) from Earth and is the second-brightest galaxy within the northern Virgo Cluster, having many satellite galaxies. Unlike a disk-shaped spiral galaxy, M87 has no distinctive dust lanes. Instead, it has an almost featureless, ellipsoidal shape typical of most giant elliptical galaxies, diminishing in luminosity with distance from the center. Forming around one-sixth of its mass, M87's stars have a nearly spherically symmetric distribution. Their population density decreases with increasing distance from the core. It has an active supermassive black hole at its core, which forms the primary component of an active galactic nucleus. The black hole was imaged using data collected in 2017 by the Event Horizon Telescope (EHT), with a final, processed image released on 10 April 2019. In March 2021, the EHT Collaboration presented, for the first time, a polarized-based image of the black hole which may help better reveal the forces giving rise to quasars.

View the full Wikipedia page for Elliptical galaxy M87
↑ Return to Menu

Supermassive black hole in the context of ESO 383-76

ESO 383-76 (ESO 383-G 076) is an elongated, X-ray luminous supergiant elliptical galaxy, residing as the dominant, brightest cluster galaxy (BCG) of the Abell 3571 galaxy cluster, the sixth-brightest in the sky at X-ray wavelengths. It is located at the distance of 200.6 megaparsecs (654 million light-years) from Earth, and is possibly a member of the large Shapley Supercluster. With a diameter of about 540.9 kiloparsecs (1.8 million light-years), it is one of the largest galaxies known. It also contains a supermassive black hole, one of the most massive known with mass estimates varying from 2 billion M to 28 billion M.

View the full Wikipedia page for ESO 383-76
↑ Return to Menu

Supermassive black hole in the context of Event Horizon Telescope

The Event Horizon Telescope (EHT) is a telescope array consisting of a global network of radio telescopes. The EHT project combines data from several very-long-baseline interferometry (VLBI) stations around Earth, which form a combined array with an angular resolution sufficient to observe objects the size of a supermassive black hole's event horizon. The project's observational targets include the two black holes with the largest angular diameter as observed from Earth: the black hole at the center of the supergiant elliptical galaxy Messier 87, and Sagittarius A*, at the center of the Milky Way.

The Event Horizon Telescope project is an international collaboration that was launched in 2009 after a long period of theoretical and technical developments. On the theory side, work on the photon orbit and first simulations of what a black hole would look like progressed to predictions of VLBI imaging for the Galactic Center black hole, Sgr A*. Technical advances in radio observing moved from the first detection of Sgr A*, through VLBI at progressively shorter wavelengths, ultimately leading to detection of horizon scale structure in both Sgr A* and M87. The collaboration now comprises over 300 members, and 60 institutions, working in over 20 countries and regions.

View the full Wikipedia page for Event Horizon Telescope
↑ Return to Menu

Supermassive black hole in the context of Binary black hole

A binary black hole (BBH), or black hole binary, is an astronomical object consisting of two black holes in close orbit around each other. Like black holes themselves, binary black hole systems are classified as either stellar-mass—involving remnants of high-mass binary star systems or formed by dynamic processes and mutual capture—or supermassive, black hole systems believed to arise from galactic mergers.

The existence of stellar-mass binary black holes was directly confirmed by gravitational wave observation in September 2015. Supermassive binary black hole candidates have been proposed based on indirect evidence, but await observational confirmation.

View the full Wikipedia page for Binary black hole
↑ Return to Menu

Supermassive black hole in the context of Extragalactic astronomy

Extragalactic astronomy is the branch of astronomy concerned with objects outside the Milky Way galaxy. In other words, it is the study of all astronomical objects which are not covered by galactic astronomy.

The closest objects in extragalactic astronomy include the galaxies of the Local Group, which are close enough to allow very detailed analyses of their contents (e.g. supernova remnants, stellar associations). As instrumentation has improved, distant objects can now be examined in more detail and so extragalactic astronomy includes objects at nearly the edge of the observable universe. Research into distant galaxies (outside of our local group) is valuable for studying aspects of the universe such as galaxy evolution and Active Galactic Nuclei (AGN) which give insight into physical phenomena (e.g. super massive black hole accretion and the presence of dark matter). It is through extragalactic astronomy that astronomers and physicists are able to study the effects of General Relativity such as gravitational lensing and gravitational waves, that are otherwise impossible (or nearly impossible) to study on a galactic scale.

View the full Wikipedia page for Extragalactic astronomy
↑ Return to Menu

Supermassive black hole in the context of Nuclear star cluster

A nuclear star cluster (NSC) or compact stellar nucleus (sometimes called young stellar nucleus) is a star cluster with high density and high luminosity near the center of mass of most galaxies.

NSCs are the central massive objects of fainter, low-mass galaxies where supermassive black holes (SMBHs) are not present or are of negligible mass. In the most massive galaxies, NSCs are entirely absent. Some galaxies, including the Milky Way, are known to contain both a NSC and a SMBH of comparable mass.

View the full Wikipedia page for Nuclear star cluster
↑ Return to Menu

Supermassive black hole in the context of NGC 4395

NGC 4395 is a nearby low surface brightness spiral galaxy located about 14 million light-years (or 4.3 Mpc) from Earth in the constellation Canes Venatici. It was discovered by German-British astronomer William Herschel on 2 January 1786. The nucleus of NGC 4395 is active and the galaxy is classified as a Seyfert Type I known for its very low-mass supermassive black hole.

View the full Wikipedia page for NGC 4395
↑ Return to Menu

Supermassive black hole in the context of Sagittarius A

Sagittarius A (Sgr A) is a complex radio source at the center of the Milky Way, which contains a supermassive black hole. It is located between Scorpius and Sagittarius, and is hidden from view at optical wavelengths by large clouds of cosmic dust in the spiral arms of the Milky Way. The dust lane that obscures the Galactic Center from a vantage point around the Sun causes the Great Rift through the bright bulge of the galaxy.

The radio source consists of three components: the supernova remnant Sagittarius A East, the spiral structure Sagittarius A West, and a very bright compact radio source at the center of the spiral, Sagittarius A* (read "A-star"). These three overlap: Sagittarius A East is the largest, West appears off-center within East, and A* is at the center of West.

View the full Wikipedia page for Sagittarius A
↑ Return to Menu

Supermassive black hole in the context of Mega-Earth

A mega-Earth or massive solid planet is a proposed neologism for a massive terrestrial exoplanet that is at least ten times the mass of Earth (M🜨). Mega-Earths would be substantially more massive than super-Earths (terrestrial and ocean planets with masses around 5–10 M🜨). The term "mega-Earth" was coined in 2014, when Kepler-10c was revealed to be a Neptune-mass planet with a density considerably greater than that of Earth. However, it has since been determined to be a typical volatile-rich planet weighing just under half that mass.

Mega-Earths or comparable objects may exist as remnant cores of evaporated gas giants or white dwarfs, and may also form around massive stars and supermassive black holes as blanets for the latter.

View the full Wikipedia page for Mega-Earth
↑ Return to Menu