Dwarf galaxy in the context of "Galaxy"

⭐ In the context of galaxies, what fundamentally distinguishes a dwarf galaxy from larger galactic structures?

Ad spacer

⭐ Core Definition: Dwarf galaxy

A dwarf galaxy is a small galaxy composed of about 1000 up to several billion stars, as compared to the Milky Way's 200–400 billion stars. The Large Magellanic Cloud, which closely orbits the Milky Way and contains over 30 billion stars, is sometimes classified as a dwarf galaxy; others consider it a full-fledged galaxy. Dwarf galaxies' formation and activity are thought to be heavily influenced by interactions with larger galaxies. Astronomers identify numerous types of dwarf galaxies, based on their shape and composition.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Dwarf galaxy in the context of Galaxy

A galaxy is a system of stars, stellar remnants, interstellar gas, dust, and dark matter bound together by gravity. The word is derived from the Greek galaxias (γαλαξίας), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. Galaxies, averaging an estimated 100 million stars, range in size from dwarfs with less than a thousand stars, to the largest galaxies knownsupergiants with one hundred trillion stars, each orbiting its galaxy's centre of mass. Most of the mass in a typical galaxy is in the form of dark matter, with only a few per cent of that mass visible in the form of stars and nebulae. Supermassive black holes are a common feature at the centres of galaxies.

Galaxies are categorised according to their visual morphology as elliptical, spiral, or irregular. The Milky Way is an example of a spiral galaxy. It is estimated that there are between 200 billion (2×10) to 2 trillion galaxies in the observable universe. Most galaxies are 1,000 to 100,000 parsecs in diameter (approximately 3,000 to 300,000 light years) and are separated by distances in the order of millions of parsecs (or megaparsecs). For comparison, the Milky Way has a diameter of at least 26,800 parsecs (87,400 ly) and is separated from the Andromeda Galaxy, its nearest large neighbour, by just over 750,000 parsecs (2.5 million ly).

↓ Explore More Topics
In this Dossier

Dwarf galaxy in the context of Galactic tide

A galactic tide is a tidal force experienced by objects subject to the gravitational field of a galaxy such as the Milky Way. Particular areas of interest concerning galactic tides include galactic collisions, the disruption of dwarf or satellite galaxies, and the Milky Way's tidal effect on the Oort cloud of the Solar System.

↑ Return to Menu

Dwarf galaxy in the context of Large Magellanic Cloud

The Large Magellanic Cloud (LMC) is a dwarf galaxy and satellite galaxy of the Milky Way. At a distance of around 50 kiloparsecs (163,000 light-years), the LMC is the second- or third-closest galaxy to the Milky Way, after the Sagittarius Dwarf Spheroidal (c. 16 kiloparsecs (52,000 light-years) away) and the possible dwarf irregular galaxy called the Canis Major Overdensity. It is about 9.86 kiloparsecs (32,200 light-years) across, and has roughly one-hundredth the mass of the Milky Way making it the fourth-largest galaxy in the Local Group, after the Andromeda Galaxy (M31), the Milky Way, and the Triangulum Galaxy (M33).

The LMC is classified as a Magellanic spiral. It contains a stellar bar that is geometrically off-center, suggesting that it was once a barred dwarf spiral galaxy before its spiral arms were disrupted, likely by tidal interactions from the nearby Small Magellanic Cloud (SMC) and the Milky Way's gravity. The LMC is predicted to merge with the Milky Way in approximately 2.4 billion years.

↑ Return to Menu

Dwarf galaxy in the context of Magellanic spiral

A Magellanic spiral galaxy is a spiral galaxy with only one spiral arm. Magellanic spiral galaxies are classified as the type Sm (with sub-categories SAm, SBm, SABm); the prototype galaxy and namesake for Magellanic spirals is the Large Magellanic Cloud, an SBm galaxy. They are usually smaller dwarf galaxies and can be considered to be intermediate between dwarf spiral galaxies and irregular galaxies. They are found in proximity to larger spiral galaxies such as the Milky Way, as is the case with the LMC and the Small Magellanic Cloud (SMC).

Magellanic spiral galaxies also have a stratified stellar structure; main sequence stars are found in their spiral arm, and supergiants are clustered in a thick rectangular bar across the middle.

↑ Return to Menu

Dwarf galaxy in the context of Small Magellanic Cloud

The Small Magellanic Cloud (SMC) is a dwarf galaxy near the Milky Way. Classified as a dwarf irregular galaxy, the SMC has a D25 isophotal diameter of about 5.78 kiloparsecs (18,900 light-years), and contains several hundred million stars. It has a total mass of approximately 7 billion solar masses. At a distance of about 200,000 light-years, the SMC is among the nearest intergalactic neighbors of the Milky Way and is one of the most distant objects visible to the naked eye.

The SMC is visible from the entire Southern Hemisphere and can be fully glimpsed low above the southern horizon from latitudes south of about 15° north. The galaxy is located across the constellation of Tucana and part of Hydrus, appearing as a faint, hazy patch resembling a detached piece of the Milky Way. The SMC has an average apparent diameter of about 4.2° (8 times the Moon's) and thus covers an area of about 14 square degrees (70 times the Moon's). Since its surface brightness is very low, this deep-sky object is best seen on clear moonless nights and away from city lights. The SMC forms a pair with the Large Magellanic Cloud (LMC), which lies 20° to the east, and, like the LMC, is a member of the Local Group. It is currently a satellite of the Milky Way but is likely a former satellite of the LMC.

↑ Return to Menu

Dwarf galaxy in the context of Crater 2

Crater 2 is a low-surface-brightness dwarf satellite galaxy of the Milky Way, located approximately 380,000 ly from Earth. Its discovery in 2016 revealed significant gaps in astronomers' understanding of galaxies possessing relatively small half-light diameters and suggested the possibility of many undiscovered dwarf galaxies orbiting the Milky Way. Crater 2 was identified in imaging data from the VST ATLAS survey.

The galaxy has a half-light radius of ~1100 pc, making it the fourth largest satellite of the Milky Way. It has an angular size about double of that of the moon. Despite the large size, Crater 2 has a surprisingly low surface brightness, implying that it is not very massive. In addition, its velocity dispersion is also low, suggesting it may have formed in a halo of low dark matter density. Alternatively, it may be a result of tidal interactions with it and larger galaxies, such as the Milky Way and the Large Magellanic Cloud, but according to some simulations, this would not explain the relatively large size. This unusually low velocity dispersion was predicted using Modified Newtonian Dynamics, an alternative to the dark matter hypothesis. This prediction was later confirmed by observations.

↑ Return to Menu

Dwarf galaxy in the context of Magellanic Clouds

The Magellanic Clouds (Magellanic system or Nubeculae Magellani) are two irregular dwarf galaxies in the southern celestial hemisphere. Orbiting the Milky Way galaxy, these satellite galaxies are members of the Local Group. Because both show signs of a bar structure, they are often reclassified as Magellanic spiral galaxies.

↑ Return to Menu

Dwarf galaxy in the context of Omega Centauri

Omega Centauri (ω Cen, NGC 5139, or Caldwell 80) is a globular cluster in the constellation of Centaurus that was first identified as a non-stellar object by Edmond Halley in 1677. Located at a distance of 17,090 light-years (5,240 parsecs), it is the largest known globular cluster in the Milky Way at a diameter of roughly 150 light-years. It is estimated to contain approximately 10 million stars, with a total mass of 4 million solar masses, making it the most massive known globular cluster in the Milky Way.

Omega Centauri is very different from most other galactic globular clusters to the extent that it is thought to have originated as the core remnant of a disrupted dwarf galaxy. There is evidence of an intermediate-mass black hole in the dense core of this cluster, although this is disputed.

↑ Return to Menu