Supercooled water in the context of Freezing point


Supercooled water in the context of Freezing point

Supercooled water Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Supercooled water in the context of "Freezing point"


⭐ Core Definition: Supercooled water

Supercooling, also known as undercooling, is the process of lowering the temperature of a liquid below its freezing point without it becoming a solid. Per the established international definition, supercooling means "cooling a substance below the normal freezing point without solidification". While it can be achieved by different physical means, the postponed solidification is most often due to the absence of seed crystals or nuclei around which a crystal structure can form. The supercooling of water can be achieved without any special techniques other than chemical demineralization, down to −48.3 °C (−54.9 °F). Supercooled water can occur naturally, for example in the atmosphere, animals or plants.

This phenomenon was first identified in 1724 by Daniel Gabriel Fahrenheit, while developing the Fahrenheit scale.

↓ Menu
HINT:

In this Dossier

Supercooled water in the context of Hard rime

Rime ice forms when supercooled water droplets freeze onto surfaces. In the atmosphere, there are three basic types of rime ice:

  • Soft rime forms when supercooled water freezes under calm wind conditions. It is milky and crystalline, like sugar, and similar to hoar frost.
  • Hard rime forms by rapid freezing of supercooled water under at least moderate wind conditions. The droplets freeze more or less individually, leaving air gaps.
  • Clear ice forms by slow freezing of supercooled water. Clear ice is typically transparent and homogeneous. Its amorphous and dense structure makes it adhesive.

Soft and hard rime are less dense than clear ice and less adhesive, thus generally cause less damage. Glaze ice is similar in appearance to clear ice, however it is the result of a completely different process, occurring during freezing rain or drizzle.

View the full Wikipedia page for Hard rime
↑ Return to Menu

Supercooled water in the context of Bergeron process

The Wegener–Bergeron–Findeisen process (named after Alfred Wegener, Tor Bergeron, and Walter Findeisen (de)), or "cold-rain process", is a process of ice crystal growth that occurs in mixed phase clouds (containing a mixture of supercooled water and ice) in regions where the ambient vapor pressure falls between the saturation vapor pressure over water and the lower saturation vapor pressure over ice. This is a subsaturated environment for liquid water but a supersaturated environment for ice, resulting in rapid evaporation of liquid water and rapid ice crystal growth through vapor deposition. If the number density of ice is small compared to liquid water, the ice crystals can grow large enough to fall out of the cloud, melting into raindrops if lower-level temperatures are warm enough.

The Wegener–Bergeron–Findeisen process, if occurring at all, is much more efficient in producing large particles than is the growth of larger droplets at the expense of smaller ones, since the difference in saturation pressure between liquid water and ice is larger than the enhancement of saturation pressure over small droplets (for droplets large enough to considerably contribute to the total mass). For other processes affecting particle size, see rain and cloud physics.

View the full Wikipedia page for Bergeron process
↑ Return to Menu