Summation in the context of "Euler"

Play Trivia Questions online!

or

Skip to study material about Summation in the context of "Euler"

Ad spacer

⭐ Core Definition: Summation

In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

Summations of infinite sequences are called series. They involve the concept of limit, and are not considered in this article.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Summation in the context of Euler

Leonhard Euler (/ˈɔɪlər/ OY-lər; 15 April 1707 – 18 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential discoveries in many other branches of mathematics, such as analytic number theory, complex analysis, and infinitesimal calculus. He also introduced much of modern mathematical terminology and notation, including the notion of a mathematical function. He is known for his work in mechanics, fluid dynamics, optics, astronomy, and music theory. Euler has been called a "universal genius" who "was fully equipped with almost unlimited powers of imagination, intellectual gifts and extraordinary memory". He spent most of his adult life in Saint Petersburg, Russia, and in Berlin, then the capital of Prussia.

Euler is credited for popularizing the Greek letter (lowercase pi) to denote the ratio of a circle's circumference to its diameter, as well as first using the notation for the value of a function, the letter to express the imaginary unit , the Greek letter (capital sigma) to express summations, the Greek letter (capital delta) for finite differences, and lowercase letters to represent the sides of a triangle while representing the angles as capital letters. He gave the current definition of the constant , the base of the natural logarithm, now known as Euler's number. Euler made contributions to applied mathematics and engineering, such as his study of ships, which helped navigation; his three volumes on optics, which contributed to the design of microscopes and telescopes; and his studies of beam bending and column critical loads.

↓ Explore More Topics
In this Dossier

Summation in the context of Average wage

The national average salary (or national average wage) is the mean salary for the working population of a nation. It is calculated by summing all the annual salaries of all persons in work (surveyed) and dividing the total by the number of workers (surveyed). It is not the same as the Gross domestic product (GDP) per capita, which is calculated by dividing the GDP by the total population of a country, including the unemployed and those not in the workforce (e.g. retired people, children, students, etc.). It can be useful in understanding economic conditions, and to employers and employees in negotiating salaries. The national median salary is usually significantly less than the national average salary because the distribution of workers by salary is skewed.

↑ Return to Menu

Summation in the context of Addition

Addition, usually denoted with the plus sign +, is one of the four basic operations of arithmetic, the other three being subtraction, multiplication, and division. The addition of two whole numbers results in the total or sum of those values combined. For example, the adjacent image shows two columns of apples, one with three apples and the other with two apples, totaling to five apples. This observation is expressed as "3 + 2 = 5", which is read as "three plus two equals five".

Besides counting items, addition can also be defined and executed without referring to concrete objects, using abstractions called numbers instead, such as integers, real numbers, and complex numbers. Addition belongs to arithmetic, a branch of mathematics. In algebra, another area of mathematics, addition can also be performed on abstract objects such as vectors, matrices, and elements of additive groups.

↑ Return to Menu

Summation in the context of Integral

In mathematics, an integral is the continuous analog of a sum, and is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus, the other being differentiation. Integration was initially used to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Usage of integration expanded to a wide variety of scientific fields thereafter.

A definite integral computes the signed area of the region in the plane that is bounded by the graph of a given function between two points in the real line. Conventionally, areas above the horizontal axis of the plane are positive while areas below are negative. Integrals also refer to the concept of an antiderivative, a function whose derivative is the given function; in this case, they are also called indefinite integrals. The fundamental theorem of calculus relates definite integration to differentiation and provides a method to compute the definite integral of a function when its antiderivative is known; differentiation and integration are inverse operations.

↑ Return to Menu

Summation in the context of Series (mathematics)

In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions. The mathematical properties of infinite series make them widely applicable in other quantitative disciplines such as physics, computer science, statistics and finance.

Among the Ancient Greeks, the idea that a potentially infinite summation could produce a finite result was considered paradoxical, most famously in Zeno's paradoxes. Nonetheless, infinite series were applied practically by Ancient Greek mathematicians including Archimedes, for instance in the quadrature of the parabola. The mathematical side of Zeno's paradoxes was resolved using the concept of a limit during the 17th century, especially through the early calculus of Isaac Newton. The resolution was made more rigorous and further improved in the 19th century through the work of Carl Friedrich Gauss and Augustin-Louis Cauchy, among others, answering questions about which of these sums exist via the completeness of the real numbers and whether series terms can be rearranged or not without changing their sums using absolute convergence and conditional convergence of series.

↑ Return to Menu

Summation in the context of Convergence (mathematics)

In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence defines a series S that is denoted

The nth partial sum Sn is the sum of the first n terms of the sequence; that is,

↑ Return to Menu

Summation in the context of Sum of angles of a triangle

In a Euclidean space, the sum of angles of a triangle equals a straight angle (180 degrees, π radians, two right angles, or a half-turn). A triangle has three angles, and has one at each vertex, bounded by a pair of adjacent sides.

The sum can be computed directly using the definition of angle based on the dot product and trigonometric identities, or more quickly by reducing to the two-dimensional case and using Euler's identity.

↑ Return to Menu