Subsurface ocean in the context of "Satellite planet"

Play Trivia Questions online!

or

Skip to study material about Subsurface ocean in the context of "Satellite planet"

Ad spacer

⭐ Core Definition: Subsurface ocean

Planetary oceanography, also called astro-oceanography or exo-oceanography, is the study of oceans on planets and moons other than Earth. This field developed after the discovery of sub-surface oceans in Saturn's moon Titan and Jupiter's moon Europa during the Voyager missions. The Cassini mission observed surface lakes of liquid methane on Titan, and directly sampled a plume of sub-surface ocean water from Enceladus.

Early in their geologic histories, Mars and Venus are theorized to have had large water oceans. The Mars ocean hypothesis suggests that nearly a third of the surface of Mars was once covered by water, and a runaway greenhouse effect may have boiled away the global ocean of Venus. Compounds such as salts and ammonia, when dissolved in water, will lower water's freezing point, so that water might exist in large quantities in extraterrestrial environments as brine, or convecting ice. Oceans are thought to exist beneath the surfaces of many dwarf planets and natural satellites; notably, the ocean of the moon Europa is estimated to have over twice the water volume of Earth's.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Subsurface ocean in the context of Satellite planet

A planetary-mass moon is a planetary-mass object that is a natural satellite of another non-stellar celestial object. Because of their mass, these moons are large and ellipsoidal (sometimes spherical) in shape due to hydrostatic equilibrium caused by internal partial melting and differentiation and/or from tidal or radiogenic heating, in some cases forming a subsurface ocean.

Planetary-mass moons are sometimes called satellite planets by some planetary scientists such as Alan Stern, who are more concerned with whether a celestial body has planetary geology (that is, whether it is a planetary body) than its solar or non-solar orbit (planetary dynamics). Thus they consider planetary-mass moons to be a subset of the planets. This conceptualization of planets as three classes of objects (classical planets, dwarf planets and satellite planets) has not been accepted by the International Astronomical Union (the IAU).

↓ Explore More Topics
In this Dossier

Subsurface ocean in the context of Ocean world

An ocean world, ocean planet or water world is a type of planet or natural satellite that contains a substantial amount of water in the form of oceans, as part of its hydrosphere, either beneath the surface, as subsurface oceans, or on the surface, potentially submerging all dry land. The term ocean world is also used sometimes for astronomical bodies with an ocean composed of a different fluid or thalassogen, such as lava (the case of Io), ammonia (in a eutectic mixture with water, as is likely the case of Titan's inner ocean) or hydrocarbons (like on Titan's surface, which could be the most abundant kind of exosea). The study of extraterrestrial oceans is referred to as planetary oceanography.

Earth is the only astronomical object known to presently have bodies of liquid water on its surface, although subsurface oceans are suspected to exist on Jupiter's moons Europa and Ganymede and Saturn's moons Enceladus and Titan. Several exoplanets have been found with the right conditions to support liquid water. There are also considerable amounts of subsurface water found on Earth, mostly in the form of aquifers. For exoplanets, current technology cannot directly observe liquid surface water, so atmospheric water vapor may be used as a proxy. The characteristics of ocean worlds provide clues to their history and the formation and evolution of the Solar System as a whole. Of additional interest is their potential to originate and host life.

↑ Return to Menu

Subsurface ocean in the context of Makemake

Makemake (minor-planet designation: 136472 Makemake) is a dwarf planet in the Kuiper belt, a disk of icy bodies beyond the orbit of Neptune. It is the fourth largest trans-Neptunian object and the largest member of the classical Kuiper belt, having a diameter 60% that of Pluto. It was discovered on March 31, 2005 by American astronomers Michael E. ("Mike") Brown, Chad Trujillo, and David Rabinowitz at Palomar Observatory. As one of the largest objects found by this team, the discovery of Makemake contributed to the reclassification of Pluto as a dwarf planet in 2006.

Makemake is similar to Pluto with respect to its surface: it is highly reflective, covered largely by frozen methane, and stained reddish-brown by tholins. Makemake has one known satellite, which has not been named. The orbit of this satellite suggests that Makemake's rotation has a high axial tilt, which implies that it experiences extreme seasons. Makemake shows evidence of geochemical activity and cryovolcanism, which has led scientists to suspect that it might harbor a subsurface ocean of liquid water. Gaseous methane has been found on Makemake, although it is unclear whether it is contained in an atmosphere or comes from temporary outgassing.

↑ Return to Menu

Subsurface ocean in the context of Enceladus

Enceladus is the sixth-largest moon of Saturn and the 18th largest in the Solar System. It is about 500 kilometres (310 miles) in diameter, about a tenth of that of Saturn's largest moon, Titan. It is covered by clean, freshly deposited snow hundreds of meters thick, making it one of the most reflective bodies of the Solar System. Consequently, its surface temperature at noon reaches only −198 °C (75.1 K; −324.4 °F), far colder than a light-absorbing body would be. Despite its small size, Enceladus has a wide variety of surface features, ranging from old, heavily cratered regions to young, tectonically deformed terrain.

Enceladus was discovered on August 28, 1789, by William Herschel, but little was known about it until the two Voyager spacecrafts, Voyager 1 and Voyager 2, flew by Saturn in 1980 and 1981. In 2005, the spacecraft Cassini started multiple close flybys of Enceladus, revealing its surface and environment in greater detail. In particular, Cassini discovered water-rich plumes venting from the south polar region. Cryovolcanoes near the south pole shoot geyser-like jets of water vapour, molecular hydrogen, other volatiles, and solid material, including sodium chloride crystals and ice particles, into space, totalling about 200 kilograms (440 pounds) per second. More than 100 geysers have been identified. Some of the water vapour falls back as snow, now several hundred metres thick; the rest escapes and supplies most of the material making up Saturn's E ring. According to NASA scientists, the plumes are similar in composition to comets. In 2014, NASA reported that Cassini had found evidence for a large south polar subsurface ocean of liquid water with a thickness of around 10 km (6 mi). The existence of Enceladus's subsurface ocean has since been mathematically modelled and replicated.

↑ Return to Menu

Subsurface ocean in the context of Callisto (moon)

Callisto (/kəˈlɪst/ kə-LIST-oh) is the second-largest moon of Jupiter, after Ganymede. It is also the third-largest moon in the Solar System, following Ganymede and Saturn's moon Titan, and nearly as large as the planet Mercury. With a diameter of 4,821 km, Callisto is roughly a third larger than Earth's Moon and orbits Jupiter on average at a distance of 1.883 million km, which is about five times further out than the Moon orbiting Earth. It is the outermost of the four large Galilean moons of Jupiter, which were discovered in 1610 with one of the first telescopes, and is today visible from Earth with common binoculars.

The surface of Callisto is the oldest and most heavily cratered in the Solar System. Its surface is completely covered with impact craters. It does not show any signatures of subsurface processes such as plate tectonics or volcanism, with no signs that geological activity in general has ever occurred, and is thought to have evolved predominantly under the influence of impacts. Prominent surface features include multi-ring structures, variously shaped impact craters, and chains of craters called catenae and associated scarps, ridges and deposits. At a small scale, the surface is varied and made up of small, sparkly frost deposits at the tips of high spots, surrounded by a low-lying, smooth blanket of dark material. This is thought to result from the sublimation-driven degradation of small landforms, which is supported by the general deficit of small impact craters and the presence of numerous small knobs, considered to be their remnants. The absolute ages of the landforms are not known.Callisto is composed of approximately equal amounts of rock and ice, with a density of about 1.83 g/cm, the lowest density and surface gravity of Jupiter's major moons. Compounds detected spectroscopically on the surface include water ice, carbon dioxide, silicates and organic compounds. Investigation by the Galileo spacecraft revealed that Callisto may have a small silicate core and possibly a subsurface ocean of liquid water at depths greater than 100 km.

↑ Return to Menu