Subsonic flight in the context of "Ludwig Prandtl"

Play Trivia Questions online!

or

Skip to study material about Subsonic flight in the context of "Ludwig Prandtl"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Subsonic flight in the context of Ludwig Prandtl

Ludwig Prandtl (German pronunciation: [ˈluːtvɪç ˈpʁantl̩]; 4 February 1875 – 15 August 1953) was a German fluid dynamicist, physicist and aerospace scientist. He was a pioneer in the development of rigorous systematic mathematical analyses which he used for underlying the science of aerodynamics, which have come to form the basis of the applied science of aeronautical engineering. In the 1920s, he developed the mathematical basis for the fundamental principles of subsonic aerodynamics in particular; and in general up to and including transonic velocities. His studies identified the boundary layer, thin-airfoils, and lifting-line theories. The Prandtl number was named after him.

↓ Explore More Topics
In this Dossier

Subsonic flight in the context of Lifting body

A lifting body is a fixed-wing aircraft or spacecraft configuration in which the body itself produces lift. In contrast to a flying wing, which is a wing with minimal or no conventional fuselage, a lifting body can be thought of as a fuselage with little or no conventional wing. Whereas a flying wing seeks to maximize cruise efficiency at subsonic speeds by eliminating non-lifting surfaces, lifting bodies generally minimize the drag and structure of a wing for subsonic, supersonic and hypersonic flight, or spacecraft re-entry. All of these flight regimes pose challenges for proper flight safety.

Lifting bodies were a major area of research in the 1960s and 1970s as a means to build a small and lightweight crewed spacecraft. The US built a number of lifting body rocket planes to test the concept, as well as several rocket-launched re-entry vehicles that were tested over the Pacific. Interest waned as the US Air Force lost interest in the crewed mission, and major development ended during the Space Shuttle design process when it became clear that the highly shaped fuselages made it difficult to fit fuel tankage.

↑ Return to Menu

Subsonic flight in the context of Tomahawk (missile family)

The BGM-109 Tomahawk Land Attack Missile (TLAM) is an American long-range, all-weather, jet-powered, subsonic cruise missile that is used by the United States Navy, Royal Australian Navy, Royal Netherlands Navy and Royal Navy in ship and submarine-based land-attack operations.

Developed at the Applied Physics Laboratory of Johns Hopkins University under James H. Walker near Laurel, Maryland, the Tomahawk emerged in the 1970s as a modular cruise missile first manufactured by General Dynamics. Early tests of the missile took place between 1983 and 1993, during which time 23 cruise missiles were tested over northern Canada under the "Canada–U.S. Test and Evaluation Program". The goal of the program was to simulate the climate and terrain similar to that of the northern Soviet Union, and to allow the North American Aerospace Defence Command (NORAD) to develop an anti-cruise capability. The Tomahawk aimed to fulfill the need for a medium- to long-range, low-altitude missile with diverse capabilities. Its modular design allows for compatibility with a range of warheads, including high-explosive, submunitions, and bunker-busters. The Tomahawk can use a variety of guidance systems, including GPS, inertial navigation, and terrain contour matching. Over a dozen variants and upgraded versions have been developed since the original design, including air-, sub-, and ground-launched configurations with both conventional and nuclear armaments. The Tomahawk's manufacturing history has seen several transitions. General Dynamics served as the sole supplier in the 1970s. From 1992 until 1994, McDonnell Douglas was the sole supplier of Tomahawks, producing Block II and Block III versions and remanufacturing many Tomahawks to Block III specifications. In 1994, Hughes Aircraft, having purchased General Dynamics' missile division in 1992, outbid McDonnell Douglas to become the sole supplier of Tomahawks. A joint venture between Hughes and Raytheon manufactured the missile from 1995 until Raytheon's acquisition of Hughes in 1997, solidifying their position as the sole supplier. In 2016, the US Department of Defense purchased 149 Tomahawk Block IV missiles for $202.3 million. As of 2024, Raytheon remains the sole manufacturer of non-nuclear, sea-launched Tomahawk variants.

↑ Return to Menu