Subpopulation in the context of Mixture model


Subpopulation in the context of Mixture model

Subpopulation Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Subpopulation in the context of "Mixture model"


⭐ Core Definition: Subpopulation

In statistics, a population is a set of similar items or events which is of interest for some question or experiment. A statistical population can be a group of existing objects (e.g. the set of all stars within the Milky Way galaxy) or a hypothetical and potentially infinite group of objects conceived as a generalization from experience (e.g. the set of all possible hands in a game of poker). A population with finitely many values in the support of the population distribution is a finite population with population size . A population with infinitely many values in the support is called infinite population.

A common aim of statistical analysis is to produce information about some chosen population.In statistical inference, a subset of the population (a statistical sample) is chosen to represent the population in a statistical analysis. Moreover, the statistical sample must be unbiased and accurately model the population. The ratio of the size of this statistical sample to the size of the population is called a sampling fraction. It is then possible to estimate the population parameters using the appropriate sample statistics.

↓ Menu
HINT:

👉 Subpopulation in the context of Mixture model

In statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population. However, while problems associated with "mixture distributions" relate to deriving the properties of the overall population from those of the sub-populations, "mixture models" are used to make statistical inferences about the properties of the sub-populations given only observations on the pooled population, without sub-population identity information. Mixture models are used for clustering, under the name model-based clustering, and also for density estimation.

Mixture models should not be confused with models for compositional data, i.e., data whose components are constrained to sum to a constant value (1, 100%, etc.). However, compositional models can be thought of as mixture models, where members of the population are sampled at random. Conversely, mixture models can be thought of as compositional models, where the total size reading population has been normalized to 1.

↓ Explore More Topics
In this Dossier

Subpopulation in the context of Stratified sampling

In statistics, stratified sampling is a method of sampling from a population which can be partitioned into subpopulations.

In statistical surveys, when subpopulations within an overall population vary, it could be advantageous to sample each subpopulation (stratum) independently.

View the full Wikipedia page for Stratified sampling
↑ Return to Menu