Subglacial eruption in the context of "Hyaloclastite"

Play Trivia Questions online!

or

Skip to study material about Subglacial eruption in the context of "Hyaloclastite"

Ad spacer

⭐ Core Definition: Subglacial eruption

Subglacial eruptions, those of ice-covered volcanoes, result in the interaction of magma with ice and snow, leading to meltwater formation, jökulhlaups, and lahars. Flooding associated with meltwater is a significant hazard in some volcanic areas, including Iceland, Alaska, and parts of the Andes. Jökulhlaups (glacial outburst floods) have been identified as the most frequently occurring volcanic hazard in Iceland, with major events where peak discharges of meltwater can reach 10,000 – 100,000 m/s occurring when there are large eruptions beneath glaciers.It is important to explore volcano-ice interactions to improve the effectiveness of monitoring these events and to undertake hazard assessments. This is particularly relevant given that subglacial eruptions have demonstrated their ability to cause widespread impact, with the ash cloud associated with Iceland's Eyjafjallajökull eruption in 2010 resulting in significant impacts to aviation across Europe.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Subglacial eruption in the context of Hyaloclastite

Hyaloclastite is a volcanoclastic accumulation or breccia consisting of glass (from the Greek hyalus) fragments (clasts) formed by quench fragmentation of lava flow surfaces during submarine or subglacial extrusion. It occurs as thin margins on the lava flow surfaces and between pillow lavas as well as in thicker deposits, more commonly associated with explosive, volatile-rich eruptions as well as steeper topography. Hyaloclastites form during volcanic eruptions under water, under ice or where subaerial flows reach the sea or other bodies of water. It commonly has the appearance of angular flat fragments sized between a millimeter to few centimeters. The fragmentation occurs by the force of the volcanic explosion, or by thermal shock and spallation during rapid cooling.

Several mineraloids are found in hyaloclastite masses. Sideromelane is a basalt glass rapidly quenched in water. It is transparent and pure, lacking the iron oxide crystals dispersed in the more commonly occurring tachylite. Fragments of these glasses are usually surrounded by a yellow waxy layer of palagonite, formed by reaction of sideromelane with water.

↓ Explore More Topics
In this Dossier

Subglacial eruption in the context of Brown Bluff

Brown Bluff is a basalt tuya on the Tabarin Peninsula of northern Antarctica. It formed in the last 1 million years as a result of subglacial eruptions within an englacial lake. The volcano's original diameter is thought to have been about 12–15 kilometers (7.5–9.3 mi) and was probably formed by a single vent. Brown Bluff is divided into four stages: pillow volcano, tuff cone, slope failure, and hyaloclastite delta; and into five structural units.

The volcano gets its name from its steep slopes and brown-to-black hyaloclastite. It was applied by the Falkland Islands Dependencies Survey following their survey in 1946.

↑ Return to Menu

Subglacial eruption in the context of Subaerial eruption

In volcanology, a subaerial eruption is any sort of volcanic eruption that occurs on the land surface, or in the open air "under the air". They generally produce pyroclastic flows, lava fountains and lava flows, which are commonly classified in different subaerial eruption types, including Plinian, Peléan and Hawaiian eruptions. Subaerial eruptions contrast with subaqueous, submarine and subglacial eruptions which all originate below forms of a water surface.

↑ Return to Menu

Subglacial eruption in the context of Jökulhlaup

A jökulhlaup (Icelandic pronunciation: [ˈjœːkʏl̥ˌl̥œyp] pronunciation) (literally "glacial run") is a type of glacial outburst flood. It is an Icelandic term that has been adopted in glaciological terminology in many languages. It originally referred to the well-known subglacial outburst floods from Vatnajökull, Iceland, which are triggered by geothermal heating and occasionally by a volcanic subglacial eruption, but it is now used to describe any large and abrupt release of water from a subglacial or proglacial lake/reservoir.

Since jökulhlaups emerge from hydrostatically sealed lakes with floating levels far above the threshold, their peak discharge can be much larger than that of a marginal or extra-marginal lake burst. The hydrograph of a jökulhlaup from Vatnajökull typically either climbs over a period of weeks with the largest flow near the end, or it climbs much faster during the course of some hours. These patterns are suggested to reflect channel melting, and sheet flow under the front, respectively. Similar processes on a very large scale occurred during the deglaciation of North America and Europe after the last ice age (e.g., Lake Agassiz and the English Channel), and presumably at earlier times, although the geological record is not well preserved.

↑ Return to Menu