Structure formation in the context of "Galaxy formation and evolution"

⭐ In the context of galaxy formation and evolution, the Lambda-CDM model primarily explains how galaxies develop through what fundamental process?

Ad spacer

⭐ Core Definition: Structure formation

In physical cosmology, structure formation describes the creation of galaxies, galaxy clusters, and larger structures via gravitational and hydrodynamic processes operating on cosmological inhomogeneities. The universe, as is now known from observations of the cosmic microwave background radiation, began in a hot, dense, nearly uniform state approximately 13.8 billion years ago. However, looking at the night sky today, structures on all scales can be seen, from stars and planets to galaxies. On even larger scales, galaxy clusters and sheet-like structures of galaxies are separated by enormous voids containing few galaxies. Structure formation applies models of gravitational instability to small ripples in mass density to predict these shapes.

The modern Lambda-CDM model is successful at predicting the observed large-scale distribution of galaxies, clusters and voids; but on the scale of individual galaxies there are many complications due to highly nonlinear processes involving baryonic physics, gas heating and cooling, star formation and feedback. Understanding the processes of galaxy formation is a major topic of modern cosmology research, both via observations such as the Hubble Ultra-Deep Field and via large computer simulations.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Structure formation in the context of Galaxy formation and evolution

In cosmology, the study of galaxy formation and evolution is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning, the formation of the first galaxies, the way galaxies change over time, and the processes that have generated the variety of structures observed in nearby galaxies. Galaxy formation is hypothesized to occur from structure formation theories, as a result of tiny quantum fluctuations in the aftermath of the Big Bang. The simplest model in general agreement with observed phenomena is the Lambda-CDM model—that is, clustering and merging allows galaxies to accumulate mass, determining both their shape and structure. Hydrodynamics simulation, which simulates both baryons and dark matter, is widely used to study galaxy formation and evolution.

↓ Explore More Topics
In this Dossier

Structure formation in the context of Dark energy

In physical cosmology and astronomy, dark energy is a proposed form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. It also slows the rate of structure formation. Assuming that the lambda-CDM model of cosmology is correct, dark energy dominates the universe, contributing 68% of the total energy in the present-day observable universe while dark matter and ordinary (baryonic) matter contribute 27% and 5%, respectively, and other components such as neutrinos and photons are nearly negligible. Dark energy's density is very low: 7×10 g/cm (6×10 J/m in mass-energy), much less than the density of ordinary matter or dark matter within galaxies. However, it dominates the universe's mass–energy content because it is uniform across space.

The first observational evidence for dark energy's existence came from measurements of supernovae. Type Ia supernovae have constant luminosity, which means that they can be used as accurate distance measures. Comparing this distance to the redshift (which measures the speed at which the supernova is receding) shows that the universe's expansion is accelerating. Prior to this observation, scientists thought that the gravitational attraction of matter and energy in the universe would cause the universe's expansion to slow over time. Since the discovery of accelerating expansion, several independent lines of evidence have been discovered that support the existence of dark energy.

↑ Return to Menu

Structure formation in the context of Cosmic inflation

In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe. Following the inflationary period, the universe continued to expand, but at a slower rate. The re-acceleration of this slowing expansion due to dark energy began after the universe was already over 7.7 billion years old (5.4 billion years ago).

Inflation theory was developed in the late 1970s and early 1980s, with notable contributions by several theoretical physicists, including Alexei Starobinsky at Landau Institute for Theoretical Physics, Alan Guth at Cornell University, and Andrei Linde at Lebedev Physical Institute. Starobinsky, Guth, and Linde won the 2014 Kavli Prize "for pioneering the theory of cosmic inflation". It was developed further in the early 1980s. It explains the origin of the large-scale structure of the cosmos. Quantum fluctuations in the microscopic inflationary region, magnified to cosmic size, become the seeds for the growth of structure in the Universe (see galaxy formation and evolution and structure formation). Many physicists also believe that inflation explains why the universe appears to be the same in all directions (isotropic), why the cosmic microwave background radiation is distributed evenly, why the universe is flat, and why no magnetic monopoles have been observed.

↑ Return to Menu

Structure formation in the context of Matter power spectrum

The matter power spectrum describes the density contrast of the universe (the difference between the local density and the mean density) as a function of scale. It is the Fourier transform of the matter correlation function. On large scales, gravity competes with cosmic expansion, and structures grow according to linear theory. In this regime, the density contrast field is Gaussian, Fourier modes evolve independently, and the power spectrum is sufficient to completely describe the density field. On small scales, gravitational collapse is non-linear, and can only be computed accurately using N-body simulations. Higher-order statistics are necessary to describe the full field at small scales.

↑ Return to Menu

Structure formation in the context of Inflation (cosmology)

In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe. This enormous expansion supercooled the universe and ending when the energy content of the field driving inflation condensed into hot, dense particles, a process called reheating. Following the inflationary period, the universe continued to expand, but at a slower rate.

Inflation theory was developed in the late 1970s and early 1980s, with notable contributions by several theoretical physicists, including Alexei Starobinsky at Landau Institute for Theoretical Physics, Alan Guth at Cornell University, and Andrei Linde at Lebedev Physical Institute. Starobinsky, Guth, and Linde won the 2014 Kavli Prize "for pioneering the theory of cosmic inflation". It was developed further in the early 1980s. It explains the origin of the large-scale structure of the cosmos. Quantum fluctuations in the microscopic inflationary region, magnified to cosmic size, become the seeds for the growth of structure in the Universe (see galaxy formation and evolution and structure formation). Many physicists also believe that inflation explains why the universe appears to be the same in all directions (isotropic), why the cosmic microwave background radiation is distributed evenly, why the universe is flat, and why no magnetic monopoles have been observed.

↑ Return to Menu

Structure formation in the context of Jim Peebles

Phillip James Edwin Peebles CC OM FRS (born April 25, 1935) is a Canadian-American astrophysicist, astronomer, and theoretical cosmologist who was Albert Einstein Professor in Science, emeritus, at Princeton University. He is widely regarded as one of the world's leading theoretical cosmologists in the period since 1970, with major theoretical contributions to primordial nucleosynthesis, dark matter, the cosmic microwave background, and structure formation.

Peebles was awarded half of the Nobel Prize in Physics in 2019 for his theoretical discoveries in physical cosmology. He shared the prize with Michel Mayor and Didier Queloz for their discovery of an exoplanet orbiting a sun-like star. While much of his work relates to the development of the universe from its first few seconds, he is more skeptical about what we can know about the very beginning, and stated, "It's very unfortunate that one thinks of the beginning whereas in fact, we have no good theory of such a thing as the beginning."

↑ Return to Menu