Strike and dip in the context of "Extensional fault"

Play Trivia Questions online!

or

Skip to study material about Strike and dip in the context of "Extensional fault"

Ad spacer

⭐ Core Definition: Strike and dip

In geology, strike and dip is a measurement convention used to describe the plane orientation or attitude of a planar geologic feature. A feature's strike is the azimuth of an imagined horizontal line across the plane, and its dip is the angle of inclination (or depression angle) measured downward from horizontal. They are used together to measure and document a structure's characteristics for study or for use on a geological map. A feature's orientation can also be represented by dip and dip direction, using the azimuth of the dip rather than the strike value. Linear features are similarly measured with trend and plunge, where "trend" is analogous to dip direction and "plunge" is the dip angle.

Strike and dip are measured using a compass and a clinometer. A compass is used to measure the feature's strike by holding the compass horizontally against the feature. A clinometer measures the feature's dip by recording the inclination perpendicular to the strike. These can be done separately, or together using a tool such as a Brunton transit or a Silva compass.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Strike and dip in the context of Extensional fault

An extensional fault is a fault caused by stretching of the Earth's crust. Stretching reduces the thickness and horizontally extends portions of the crust and/or lithosphere. In most cases such a fault is also a normal fault, but may create a shallower dip usually associated with a thrust fault. Extensional faults are generally planar. If the stress field is oriented with the maximum stress perpendicular to the Earth's surface, extensional faults will create an initial dip of the associated beds of about 60° from the horizontal. The faults will typically extend down to the base of the seismogenic layer. As crustal stretching continues, the faults will rotate, resulting in steeply-dipping fault blocks between them.

↓ Explore More Topics
In this Dossier

Strike and dip in the context of Orientation (geometry)

In geometry, the orientation, attitude, bearing, direction, or angular position of an object – such as a line, plane or rigid body – is part of the description of how it is placed in the space it occupies.More specifically, it refers to the imaginary rotation that is needed to move the object from a reference placement to its current placement. A rotation may not be enough to reach the current placement, in which case it may be necessary to add an imaginary translation to change the object's position (or linear position). The position and orientation together fully describe how the object is placed in space. The above-mentioned imaginary rotation and translation may be thought to occur in any order, as the orientation of an object does not change when it translates, and its position does not change when it rotates.

Euler's rotation theorem shows that in three dimensions any orientation can be reached with a single rotation around a fixed axis. This gives one common way of representing the orientation using an axis–angle representation. Other widely used methods include rotation quaternions, rotors, Euler angles, or rotation matrices. More specialist uses include Miller indices in crystallography, strike and dip in geology and grade on maps and signs.A unit vector may also be used to represent an object's normal vector direction or the relative direction between two points.

↑ Return to Menu

Strike and dip in the context of Geological map

A geological map or geologic map is a special-purpose map made to show various geological features. Rock units or geologic strata are shown by color or symbols. Bedding planes and structural features such as faults, folds, are shown with strike and dip or trend and plunge symbols which give three-dimensional orientations features. Geological mapping is an interpretive process involving multiple types of information, from analytical data to personal observation, all synthesized and recorded by the geologist. Geologic observations have traditionally been recorded on paper, whether on standardized note cards, in a notebook, or on a map.

Stratigraphic contour lines may be used to illustrate the surface of a selected stratum illustrating the subsurface topographic trends of the strata. Isopach maps detail the variations in thickness of stratigraphic units. It is not always possible to properly show this when the strata are extremely fractured, mixed, in some discontinuities, or where they are otherwise disturbed.

↑ Return to Menu

Strike and dip in the context of Thickness (geology)

Thickness in geology and mining refers to the distance across a packet of rock, whether it be a facies, stratum, bed, seam, lode etc.

Thickness is measured at right angles to the surface of the seam or bed and thus independently of its spatial orientation. The concept of thickness came originally from mining language, where it was used mainly to indicate the workability of seams. It has since become an established term in earth science, for example in geology, for the depth of sedimentary rocks, in hydrogeology for the vertical extent of groundwater – i.e. the distance from the base of the groundwater layer to its surface – or in soil science for the vertical extent of soil horizons.

↑ Return to Menu

Strike and dip in the context of Oblique subduction

Oblique subduction is a form of subduction (i.e. a tectonic process involving the convergence of two plates where the denser plate descends into Earth's interior) for which the convergence direction differs from 90° to the plate boundary. Most convergent boundaries involve oblique subduction, particularly in the Ring of Fire including the Ryukyu, Aleutian, Central America and Chile subduction zones. In general, the obliquity angle is between 15° and 30°. Subduction zones with high obliquity angles include Sunda trench (ca. 60°) and Ryukyu arc (ca. 50°).

Obliquity in plate convergence causes differences in dipping angle and subduction velocity along the plate boundary. Tectonic processes including slab roll-back, trench retreat (i.e. a tectonic response to the process of slab roll-back that moves the trench seaward) and slab fold (i.e. buckling of subducting slab due to phase transition) may also occur.

↑ Return to Menu

Strike and dip in the context of Cuesta

A cuesta (Spanish for 'slope') is a hill or ridge with a gentle slope on one side, and a steep slope on the other. In geology, the term is more specifically applied to a ridge where a harder sedimentary rock overlies a softer layer, the whole being tilted somewhat from the horizontal. This results in a long and gentle backslope called a dip slope that conforms with the dip of resistant strata, called caprock. Where erosion has exposed the frontslope of this, a steep slope or escarpment occurs. The resulting terrain may be called scarpland.

↑ Return to Menu

Strike and dip in the context of Geology of the Pyrenees

The Pyrenees are a 430-kilometre-long, roughly east–west striking, intracontinental mountain chain that divide France, Spain, and Andorra. The belt has an extended, polycyclic geological evolution dating back to the Precambrian. The chain's present configuration is due to the collision between the Iberian microcontinent and the southwestern promontory of the European plate (i.e. Southern France). The two continents were approaching each other since the onset of the Upper Cretaceous (Albian/Cenomanian) about 100 million years ago and were consequently colliding during the Paleogene (Eocene/Oligocene) 55 to 25 million years ago. After its uplift, the chain experienced intense erosion and isostatic readjustments. A cross-section through the chain shows an asymmetric flower-like structure with steeper dips on the French side. The Pyrenees are not solely the result of compressional forces, but also show an important sinistral shearing.

↑ Return to Menu