Stellar spectrum in the context of Doppler effect


Stellar spectrum in the context of Doppler effect

Stellar spectrum Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Stellar spectrum in the context of "Doppler effect"


⭐ Core Definition: Stellar spectrum

Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the spectrum of electromagnetic radiation, including visible light, ultraviolet, X-ray, infrared and radio waves that radiate from stars and other celestial objects. A stellar spectrum can reveal many properties of stars, such as their chemical composition, temperature, density, mass, distance and luminosity. Spectroscopy can show the velocity of motion towards or away from the observer by measuring the Doppler shift. Spectroscopy is also used to study the physical properties of many other types of celestial objects such as planets, nebulae, galaxies, and active galactic nuclei.

↓ Menu
HINT:

In this Dossier

Stellar spectrum in the context of Doppler spectroscopy

Doppler spectroscopy (also known as the radial-velocity method, or colloquially, the wobble method) is an indirect method for finding extrasolar planets and brown dwarfs from radial-velocity measurements via observation of Doppler shifts in the spectrum of the planet's parent star.As of June 2025, over 1,100 known extrasolar planets (about 19.0% of the total) have been discovered using Doppler spectroscopy.

View the full Wikipedia page for Doppler spectroscopy
↑ Return to Menu

Stellar spectrum in the context of Stellar pulsation

Stellar pulsations are caused by expansions and contractions in the outer layers as a star seeks to maintain equilibrium. These fluctuations in stellar radius cause corresponding changes in the luminosity of the star. Astronomers are able to deduce this mechanism by measuring the spectrum and observing the Doppler effect. Many intrinsic variable stars that pulsate with large amplitudes, such as the classical Cepheids, RR Lyrae stars and large-amplitude Delta Scuti stars show regular light curves.

This regular behavior is in contrast with the variability of stars that lie parallel to and to the high-luminosity/low-temperature side of the classical variable stars in the Hertzsprung–Russell diagram. These giant stars are observed to undergo pulsations ranging from weak irregularity, when one can still define an average cycling time or period, (as in most RV Tauri and semiregular variables) to the near absence of repetitiveness in the irregular variables. The W Virginis variables are at the interface; the short period ones are regular and the longer period ones show first relatively regular alternations in the pulsationscycles, followed by the onset of mild irregularity as in the RV Tauri stars into which they gradually morph as their periods get longer. Stellar evolution and pulsation theories suggest that these irregular stars have a much higher luminosity to mass (L/M) ratios.

View the full Wikipedia page for Stellar pulsation
↑ Return to Menu

Stellar spectrum in the context of Stellar classification

In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences. The spectral class of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature.

Most stars are currently classified under the Morgan–Keenan (MK) system using the letters O, B, A, F, G, K, and M, a sequence from the hottest (O type) to the coolest (M type). Each letter class is then subdivided using a numeric digit with 0 being hottest and 9 being coolest (e.g., A8, A9, F0, and F1 form a sequence from hotter to cooler). The sequence has been expanded with three classes for other stars that do not fit in the classical system: W, S and C. Some stellar remnants or objects of deviating mass have also been assigned letters: D for white dwarfs and L, T and Y for brown dwarfs (and exoplanets).

View the full Wikipedia page for Stellar classification
↑ Return to Menu

Stellar spectrum in the context of Spectral type

In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences. The spectral class of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature.

Most stars are currently classified under the Morgan–Keenan (MK) system using the letters O, B, A, F, G, K, and M, a sequence from the hottest (O-type) to the coolest (M-type). Each letter class is then subdivided using a numeric digit with 0 being hottest and 9 being coolest (e.g., A8, A9, F0, and F1 form a sequence from hotter to cooler). The sequence has been expanded with three classes for other stars that do not fit in the classical system: W, S and C. Some stellar remnants or objects of deviating mass have also been assigned letters: D for white dwarfs and L, T and Y for brown dwarfs (and exoplanets).

View the full Wikipedia page for Spectral type
↑ Return to Menu

Stellar spectrum in the context of Pollux (star)

Pollux is the brightest star in the constellation of Gemini. It has the Bayer designation β Geminorum, which is Latinised to Beta Geminorum and abbreviated Beta Gem or β Gem. This is an orange-hued, evolved red giant located at a distance of 34 light-years, making it the closest red giant (and giant star) to the Sun. Since 1943, the spectrum of this star has served as one of the stable anchor points by which other stars are classified. In 2006, an exoplanet (designated Pollux b or β Geminorum b, later named Thestias) was announced to be orbiting it.

View the full Wikipedia page for Pollux (star)
↑ Return to Menu

Stellar spectrum in the context of List of most luminous stars

This is a list of stars arranged by their absolute magnitude – their intrinsic stellar luminosity. This cannot be observed directly, so instead must be calculated from the apparent magnitude (the brightness as seen from Earth), the distance to each star, and a correction for interstellar extinction. The entries in the list below are further corrected to provide the bolometric magnitude, i.e., integrated over all wavelengths; this relies upon measurements in multiple photometric filters and extrapolation of the stellar spectrum based on the stellar spectral type and/or effective temperature.

Entries give the bolometric luminosity in multiples of the luminosity of the Sun (L) and the bolometric absolute magnitude. As with all magnitude systems in astronomy, the latter scale is logarithmic and inverted i.e., more negative numbers are more luminous.

View the full Wikipedia page for List of most luminous stars
↑ Return to Menu

Stellar spectrum in the context of Fomalhaut

Fomalhaut (UK: /ˈfɒməlt/, US: /ˈfməlhɔːt/) is the brightest star in the southern constellation of Piscis Austrinus, the Southern Fish, and one of the brightest stars in the night sky. It has the Bayer designation Alpha Piscis Austrini, which is an alternative form of α Piscis Austrini, and is abbreviated Alpha PsA or α PsA. This is a class A star on the main sequence approximately 25 light-years (7.7 pc) from the Sun as measured by the Hipparcos astrometry satellite. Since 1943, the spectrum of this star has served as one of the stable anchor points by which other stars are classified.

It is classified as a Vega-like star that emits excess infrared radiation, indicating it is surrounded by a circumstellar disk.

View the full Wikipedia page for Fomalhaut
↑ Return to Menu

Stellar spectrum in the context of 35 Aquilae

35 Aquilae (abbreviated 35 Aql) is a star in the equatorial constellation of Aquila. 35 Aquilae is its Flamsteed designation though it also bears the Bayer designation c Aquilae. The apparent visual magnitude of this star is 5.8, which means it is a faint star but visible to the naked eye from dark suburban or rural skies. It has an annual parallax shift of 16.34 mas that is caused by the Earth's orbit around the Sun. This yields a distance estimate of 200 light-years (61 parsecs), give or take a 4 light-year margin of error. At this distance, the visual magnitude is diminished by 0.26 from extinction caused by interstellar gas and dust.

The spectrum of 35 Aquilae fits a stellar classification of A0 V, indicating it is an A-type main sequence star. Compared to the Sun, it has 210% of the mass and 180% of the radius. As such, it is much brighter than the Sun, emitting 14 times the luminosity from its outer atmosphere at an effective temperature of 8,939 K. This heat causes it to glow with the white-hot hue of an A-type star. 35 Aquilae is spinning rapidly with a projected rotational velocity of 110 km/s.

View the full Wikipedia page for 35 Aquilae
↑ Return to Menu