Radiant energy in the context of Stellar spectrum


Radiant energy in the context of Stellar spectrum

Radiant energy Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Radiant energy in the context of "Stellar spectrum"


⭐ Core Definition: Radiant energy

In physics, and in particular as measured by radiometry, radiant energy is the energy of electromagnetic and gravitational radiation. As energy, its SI unit is the joule (J). The quantity of radiant energy may be calculated by integrating radiant flux (or power) with respect to time. The symbol Qe is often used throughout literature to denote radiant energy ("e" for "energetic", to avoid confusion with photometric quantities). In branches of physics other than radiometry, electromagnetic energy is referred to using E or W. The term is used particularly when electromagnetic radiation is emitted by a source into the surrounding environment. This radiation may be visible or invisible to the human eye.

↓ Menu
HINT:

In this Dossier

Radiant energy in the context of Energy

Energy (from Ancient Greek ἐνέργεια (enérgeia) 'activity') is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat and light. Energy is a conserved quantity—the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The unit of measurement for energy in the International System of Units (SI) is the joule (J).

Forms of energy include the kinetic energy of a moving object, the potential energy stored by an object (for instance due to its position in a field), the elastic energy stored in a solid object, chemical energy associated with chemical reactions, the radiant energy carried by electromagnetic radiation, the internal energy contained within a thermodynamic system, and rest energy associated with an object's rest mass. These are not mutually exclusive.

View the full Wikipedia page for Energy
↑ Return to Menu

Radiant energy in the context of Quasar

A quasar (/ˈkwzɑːr/ KWAY-zar) is an extremely luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by accretion onto a supermassive black hole with a mass ranging from millions to tens of billions of solar masses, surrounded by a gaseous accretion disc. Gas in the disc falling towards the black hole heats up and releases energy in the form of electromagnetic radiation. The radiant energy of quasars is enormous; the most powerful quasars have luminosities thousands of times greater than that of a galaxy such as the Milky Way. Quasars are usually categorized as a subclass of the more general category of AGN. The redshifts of quasars are of cosmological origin.

View the full Wikipedia page for Quasar
↑ Return to Menu

Radiant energy in the context of Greenhouse gas

Greenhouse gases (GHGs) are the gases in an atmosphere that trap heat, raising the surface temperature of astronomical bodies such as Earth. Unlike other gases, greenhouse gases absorb the radiations that a planet emits, resulting in the greenhouse effect. The Earth is warmed by sunlight, causing its surface to radiate heat, which is then mostly absorbed by greenhouse gases. Without greenhouse gases in the atmosphere, the average temperature of Earth's surface would be about −18 °C (0 °F), rather than the present average of 15 °C (59 °F). Human-induced warming has been increasing at a rate that is unprecedented in the instrumental record, reaching 0.27 [0.2–0.4] °C per decade over 2015–2024. This high rate of warming is caused by a combination of greenhouse gas emissions being at an all-time high of 53.6±5.2 Gt CO2e yr−1 over the last decade (2014–2023), as well as reductions in the strength of aerosol cooling.

The five most abundant greenhouse gases in Earth's atmosphere, listed in decreasing order of average global mole fraction, are: water vapor, carbon dioxide, methane, nitrous oxide, ozone. Other greenhouse gases of concern include chlorofluorocarbons (CFCs and HCFCs), hydrofluorocarbons (HFCs), perfluorocarbons, SF
6
, and NF
3
. Water vapor causes about half of the greenhouse effect, acting in response to other gases as a climate change feedback.

View the full Wikipedia page for Greenhouse gas
↑ Return to Menu

Radiant energy in the context of Solar irradiance

Solar irradiance is the power per unit area (surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre (W/m) in SI units.

Solar irradiance is often integrated over a given time period in order to report the radiant energy emitted into the surrounding environment (joule per square metre, J/m) during that time period. This integrated solar irradiance is called solar irradiation, solar radiation, solar exposure, solar insolation, or insolation.

View the full Wikipedia page for Solar irradiance
↑ Return to Menu

Radiant energy in the context of Electromagnetic radiation

In physics, electromagnetic radiation (EMR) or electromagnetic wave (EMW) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency (inversely proportional to wavelength), ranging from radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, to gamma rays. All forms of EMR travel at the speed of light in a vacuum and exhibit wave–particle duality, behaving both as waves and as discrete particles called photons.

Electromagnetic radiation is produced by accelerating charged particles such as from the Sun and other celestial bodies or artificially generated for various applications. Its interaction with matter depends on wavelength, influencing its uses in communication, medicine, industry, and scientific research. Radio waves enable broadcasting and wireless communication, infrared is used in thermal imaging, visible light is essential for vision, and higher-energy radiation, such as X-rays and gamma rays, is applied in medical imaging, cancer treatment, and industrial inspection. Exposure to high-energy radiation can pose health risks, making shielding and regulation necessary in certain applications.

View the full Wikipedia page for Electromagnetic radiation
↑ Return to Menu

Radiant energy in the context of Particle radiation

Particle radiation is the radiation of energy by means of fast-moving subatomic particles. Particle radiation is referred to as a particle beam if the particles are all moving in the same direction, similar to a light beam.

Due to the wave–particle duality, all moving particles also have wave character. Higher energy particles more easily exhibit particle characteristics, while lower energy particles more easily exhibit wave characteristics.

View the full Wikipedia page for Particle radiation
↑ Return to Menu

Radiant energy in the context of Light absorption

In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy—and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy).

A notable effect of the absorption of electromagnetic radiation is attenuation of the radiation; attenuation is the gradual reduction of the intensity of light waves as they propagate through a medium.

View the full Wikipedia page for Light absorption
↑ Return to Menu

Radiant energy in the context of Transmittance

Electromagnetic radiation can be affected in several ways by the medium in which it propagates.  It can be scattered, absorbed, and reflected and refracted at discontinuities in the medium.  This page is an overview of the last 3. The transmittance of a material and any surfaces is its effectiveness in transmitting radiant energy; the fraction of the initial (incident) radiation which propagates to a location of interest (often an observation location). This may be described by the transmission coefficient.

View the full Wikipedia page for Transmittance
↑ Return to Menu

Radiant energy in the context of Spectral power distribution

In radiometry, photometry, and color science, a spectral power distribution (SPD) measurement describes the power per unit area per unit wavelength of an illumination (radiant exitance). More generally, the term spectral power distribution can refer to the concentration, as a function of wavelength, of any radiometric or photometric quantity (e.g. radiant energy, radiant flux, radiant intensity, radiance, irradiance, radiant exitance, radiosity, luminance, luminous flux, luminous intensity, illuminance, luminous emittance).

Knowledge of the SPD is crucial for optical-sensor system applications. Optical properties such as transmittance, reflectivity, and absorbance as well as the sensor response are typically dependent on the incident wavelength.

View the full Wikipedia page for Spectral power distribution
↑ Return to Menu

Radiant energy in the context of Intensity (physics)

In physics and many other areas of science and engineering the intensity or flux of radiant energy is the power transferred per unit area, where the area is measured on the plane perpendicular to the direction of propagation of the energy. In the SI system, it has units watts per square metre (W/m), or kgs in base units. Intensity is used most frequently with waves such as acoustic waves (sound), matter waves such as electrons in electron microscopes, and electromagnetic waves such as light or radio waves, in which case the average power transfer over one period of the wave is used. Intensity can be applied to other circumstances where energy is transferred. For example, one could calculate the intensity of the kinetic energy carried by drops of water from a garden sprinkler.

The word "intensity" as used here is not synonymous with "strength", "amplitude", "magnitude", or "level", as it sometimes is in colloquial speech.

View the full Wikipedia page for Intensity (physics)
↑ Return to Menu

Radiant energy in the context of Gravitational radiation

Gravitational waves are waves of spacetime distortion and curvature that propagate at the speed of light; these are produced by relative motion between gravitating masses. They were proposed by Oliver Heaviside in 1893 and then later by Henri Poincaré in 1905 as the gravitational equivalent of electromagnetic waves. In 1916, Albert Einstein demonstrated that gravitational waves result from his general theory of relativity as "ripples in spacetime".

Gravitational waves transport energy as gravitational radiation, a form of radiant energy similar to electromagnetic radiation. Newton's law of universal gravitation, part of classical mechanics, does not provide for their existence, instead asserting that gravity has instantaneous effect everywhere. Gravitational waves therefore stand as an important relativistic phenomenon that is absent from Newtonian physics.

View the full Wikipedia page for Gravitational radiation
↑ Return to Menu

Radiant energy in the context of Chloroplast

A chloroplast (/ˈklɔːrəˌplæst, -plɑːst/) is a type of organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. Chloroplasts have a high concentration of chlorophyll pigments which capture the energy from sunlight and convert it to chemical energy and release oxygen. The chemical energy created is then used to make sugar and other organic molecules from carbon dioxide in a process called the Calvin cycle. Chloroplasts carry out a number of other functions, including fatty acid synthesis, amino acid synthesis, and the immune response in plants. The number of chloroplasts per cell varies from one, in some unicellular algae, up to 100 in plants like Arabidopsis and wheat.

Chloroplasts are highly dynamic—they circulate and are moved around within cells. Their behavior is strongly influenced by environmental factors like light color and intensity. Chloroplasts cannot be made anew by the plant cell and must be inherited by each daughter cell during cell division, which is thought to be inherited from their ancestor—a photosynthetic cyanobacterium that was engulfed by an early eukaryotic cell.

View the full Wikipedia page for Chloroplast
↑ Return to Menu

Radiant energy in the context of Solar energy

Solar energy is the radiant energy from the Sun's light and heat, which can be harnessed using a range of technologies such as solar electricity, solar thermal energy (including solar water heating) and solar architecture. It is an essential source of renewable energy, and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power, and solar water heating to harness the energy. Passive solar techniques include designing a building for better daylighting, selecting materials with favorable thermal mass or light-dispersing properties, and organizing spaces that naturally circulate air.

In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries' energy security through reliance on an indigenous, inexhaustible, and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating global warming .... these advantages are global".

View the full Wikipedia page for Solar energy
↑ Return to Menu

Radiant energy in the context of Habitable zone

In astronomy and astrobiology, the habitable zone (HZ), the circumstellar habitable zone (CHZ), the Goldilocks zone, is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure. The bounds of the HZ are based on Earth's position in the Solar System and the amount of radiant energy it receives from the Sun. Due to the importance of liquid water to Earth's biosphere, the nature of the HZ and the objects within it may be instrumental in determining the scope and distribution of planets capable of supporting Earth-like extraterrestrial life and intelligence. As such, it is considered by many to be a major factor of planetary habitability, and the most likely place to find extraterrestrial liquid water and biosignatures elsewhere in the universe.

The habitable zone is also called the Goldilocks zone, a metaphor, allusion and antonomasia of the children's fairy tale of "Goldilocks and the Three Bears", in which a little girl chooses from sets of three items, rejecting the ones that are too extreme (large or small, hot or cold, etc.), and settling on the one in the middle, which is "just right".

View the full Wikipedia page for Habitable zone
↑ Return to Menu