Stellar corona in the context of "Coronal holes"

Play Trivia Questions online!

or

Skip to study material about Stellar corona in the context of "Coronal holes"

Ad spacer

⭐ Core Definition: Stellar corona

In astronomy, a corona (pl.: coronas or coronae) is the outermost layer of a star's atmosphere. It is a hot but relatively dim region of plasma populated by intermittent coronal structures such as prominences, coronal loops, and helmet streamers.

The Sun's corona lies above the chromosphere and extends millions of kilometres into outer space. Coronal light is typically obscured by diffuse sky radiation and glare from the solar disk, but can be easily seen by the naked eye during a total solar eclipse or with a specialized coronagraph. Spectroscopic measurements indicate strong ionization in the corona and a plasma temperature in excess of 1000000 kelvins, much hotter than the surface of the Sun, known as the photosphere.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Stellar corona in the context of Coronal holes

A coronal hole is a region of the Sun's corona that appears dark in extreme-ultraviolet (EUV) and soft-X-ray images because its plasma is cooler and more rarefied than the surrounding corona. Despite its name, a coronal hole is not an actual physical hole or void in the Sun's corona. The darkness reveals open magnetic field lines that guide plasma directly into interplanetary space, producing the fast component of the solar wind. They are composed of relatively cool and tenuous plasma permeated by magnetic fields that are open to interplanetary space. This results in decreased temperature and density of the plasma at the site of a coronal hole, as well as an increased speed in the average solar wind measured in interplanetary space.

Coronal holes were first identified unambiguously in soft-X-ray images from the 1973 Skylab mission, although eclipse photographs had hinted at polar dark regions earlier in the twentieth century. Routine mapping now combines full-disk EUV imagers with ground-based synoptic magnetographs to track hole evolution and feed space-weather forecasts.

↓ Explore More Topics
In this Dossier

Stellar corona in the context of Solar wind

The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of particle species found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, and iron. There are also rarer traces of some other nuclei and isotopes such as phosphorus, titanium, chromium, and nickel's isotopes Ni, Ni, and Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.

At a distance of more than a few solar radii from the Sun, the solar wind reaches speeds of 250–750 km/s and is supersonic, meaning it moves faster than the speed of fast magnetosonic waves. The flow of the solar wind is no longer supersonic at the termination shock. Other related phenomena include the aurora (northern and southern lights), comet tails that always point away from the Sun, and geomagnetic storms that can change the direction of magnetic field lines.

↑ Return to Menu

Stellar corona in the context of Gamma-ray astronomy

Gamma-ray astronomy is a subfield of astronomy where scientists observe and study celestial objects and phenomena in outer space which emit cosmic electromagnetic radiation in the form of gamma rays, i.e. photons with the highest energies (above 100 keV) at the very shortest wavelengths. X-ray astronomy uses the next lower energy range, X-ray radiation, with energy below 100 keV.

In most cases, gamma rays from solar flares and Earth's atmosphere fall in the MeV range, but it's now known that solar flares can also produce gamma rays in the GeV range, contrary to previous beliefs. Much of the detected gamma radiation stems from collisions between hydrogen gas and cosmic rays within our galaxy. These gamma rays, originating from diverse mechanisms such as electron-positron annihilation, the inverse Compton effect and in some cases gamma decay, occur in regions of extreme temperature, density, and magnetic fields, reflecting violent astrophysical processes like the decay of neutral pions. They provide insights into extreme events like supernovae, hypernovae, and the behavior of matter in environments such as pulsars and blazars. A huge number of gamma ray emitting high-energy systems like black holes, stellar coronas, neutron stars, white dwarf stars, remnants of supernova, clusters of galaxies, including the Crab Nebula and the Vela Pulsar (the most powerful source so far), have been identified, alongside an overall diffuse gamma-ray background along the plane of the Milky Way galaxy. Cosmic radiation with the highest energy triggers electron-photon cascades in the atmosphere, while lower-energy gamma rays are only detectable above it. Gamma-ray bursts, like GRB 190114C, are transient phenomena challenging our understanding of high-energy astrophysical processes, ranging from microseconds to several hundred seconds.

↑ Return to Menu

Stellar corona in the context of Parker Solar Probe

The Parker Solar Probe (PSP; previously Solar Probe, Solar Probe Plus or Solar Probe+) is a NASA space probe launched in 2018 to make observations of the Sun's outer corona.

It used repeated gravity assists from Venus to develop an eccentric orbit, approaching within 9.86 solar radii (6.9 million km or 4.3 million miles) from the center of the Sun. At its closest approach in 2024, its speed relative to the Sun was 690,000 km/h (430,000 mph) or 191 km/s (118.7 mi/s), which is 0.064% the speed of light. It is the fastest object ever built on Earth.

↑ Return to Menu

Stellar corona in the context of Interplanetary magnetic field

The interplanetary magnetic field (IMF), also commonly referred to as the heliospheric magnetic field (HMF), is the component of the solar magnetic field that is dragged out from the solar corona by the solar wind flow to fill the Solar System.

↑ Return to Menu

Stellar corona in the context of Alfvén surface

The Alfvén surface is the boundary separating a star's corona from the stellar wind defined as where the coronal plasma's Alfvén speed and the large-scale stellar wind speed are equal. It is named after Hannes Alfvén, and is also called Alfvén critical surface, Alfvén point, or Alfvén radius. In 2018, the Parker Solar Probe became the first spacecraft that crossed Alfvén surface of the Sun.

↑ Return to Menu

Stellar corona in the context of Chromosphere

A chromosphere ("sphere of color", from the Ancient Greek words χρῶμα (khrôma) 'color' and σφαῖρα (sphaîra) 'sphere') is the second layer of a star's atmosphere, located above the photosphere and below the solar transition region and corona. The term usually refers to the Sun's chromosphere, but not exclusively, since it also refers to the corresponding layer of a stellar atmosphere. The name was suggested by the English astronomer Norman Lockyer after conducting systematic solar observations in order to distinguish the layer from the white-light emitting photosphere.

In the Sun's atmosphere, the chromosphere is roughly 3,000 to 5,000 kilometers (1,900 to 3,100 miles) in height, or slightly more than 1% of the Sun's radius at maximum thickness. It possesses a homogeneous layer at the boundary with the photosphere. Narrow jets of plasma, called spicules, rise from this homogeneous region and through the chromosphere, extending up to 10,000 km (6,200 mi) into the corona above.

↑ Return to Menu

Stellar corona in the context of Solar flare

A solar flare is a relatively intense, localized emission of electromagnetic radiation in the Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar particle events, and other eruptive solar phenomena. The occurrence of solar flares varies with the 11-year solar cycle.

Solar flares are thought to occur when stored magnetic energy in the Sun's atmosphere accelerates charged particles in the surrounding plasma. This results in the emission of electromagnetic radiation across the electromagnetic spectrum. The typical time profile of these emissions features three identifiable phases: a precursor phase, an impulsive phase when particle acceleration dominates, a gradual phase in which hot plasma injected into the corona by the flare cools by a combination of radiation and conduction of energy back down to the lower atmosphere, and a currently unexplained EUV late phase that occurs in some flares.

↑ Return to Menu

Stellar corona in the context of Solar activity

Solar phenomena are natural phenomena which occur within the atmosphere of the Sun. They take many forms, including solar wind, radio wave flux, solar flares, coronal mass ejections, coronal heating and sunspots.

These phenomena are believed to be generated by a helical dynamo, located near the center of the Sun's mass, which generates strong magnetic fields, as well as a chaotic dynamo, located near the surface, which generates smaller magnetic field fluctuations. All solar fluctuations together are referred to as solar variation, producing space weather within the Sun's gravitational field.

↑ Return to Menu