Statistical forecasting in the context of "White noise"

Play Trivia Questions online!

or

Skip to study material about Statistical forecasting in the context of "White noise"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Statistical forecasting in the context of White noise

In signal processing, white noise is a random signal having equal intensity at different frequencies, giving it a constant power spectral density. The term is used with this or similar meanings in many scientific and technical disciplines, including physics, acoustical engineering, telecommunications, and statistical forecasting. White noise refers to a statistical model for signals and signal sources, not to any specific signal. White noise draws its name from white light, although light that appears white generally does not have a flat power spectral density over the visible band.

In discrete time, white noise is a discrete signal whose samples are regarded as a sequence of serially uncorrelated random variables with a mean of zero and a finite variance; a single realization of white noise is a random shock. In some contexts, it is also required that the samples be independent and have identical probability distribution (in other words independent and identically distributed random variables are the simplest representation of white noise). In particular, if each sample has a normal distribution with zero mean, the signal is said to be additive white Gaussian noise.

↓ Explore More Topics
In this Dossier