State variable in the context of Differential equation


State variable in the context of Differential equation

State variable Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about State variable in the context of "Differential equation"


⭐ Core Definition: State variable

A state variable is one of the set of variables that are used to describe the mathematical "state" of a dynamical system. Intuitively, the state of a system describes enough about the system to determine its future behaviour in the absence of any external forces affecting the system. Models that consist of coupled first-order differential equations are said to be in state-variable form.

In thermodynamics, state variables are defined as large-scale characteristics or aggregate properties of a system which provide a macroscopic description of it. In general, state variables have the following properties in common:

↓ Menu
HINT:

In this Dossier

State variable in the context of Steady state

In systems theory, a system or a process is in a steady state if the variables (called state variables) which define the behavior of the system or the process are unchanging in time. In continuous time, this means that for those properties p of the system, the partial derivative with respect to time is zero and remains so:

In discrete time, it means that the first difference of each property is zero and remains so:

View the full Wikipedia page for Steady state
↑ Return to Menu

State variable in the context of State (controls)

In control engineering and system identification, a state-space representation is a mathematical model of a physical system that uses state variables to track how inputs shape system behavior over time through first-order differential equations or difference equations. These state variables change based on their current values and inputs, while outputs depend on the states and sometimes the inputs too. The state space (also called time-domain approach and equivalent to phase space in certain dynamical systems) is a geometric space where the axes are these state variables, and the system’s state is represented by a state vector.

For linear, time-invariant, and finite-dimensional systems, the equations can be written in matrix form, offering a compact alternative to the frequency domain’s Laplace transforms for multiple-input and multiple-output (MIMO) systems. Unlike the frequency domain approach, it works for systems beyond just linear ones with zero initial conditions. This approach turns systems theory into an algebraic framework, making it possible to use Kronecker structures for efficient analysis.

View the full Wikipedia page for State (controls)
↑ Return to Menu

State variable in the context of Equation of state

In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. Most modern equations of state are formulated in the Helmholtz free energy. Equations of state are useful in describing the properties of pure substances and mixtures in liquids, gases, and solid states as well as the state of matter in the interior of stars. Though there are many equations of state, none accurately predicts properties of substances under all conditions. The quest for a universal equation of state has spanned three centuries.

View the full Wikipedia page for Equation of state
↑ Return to Menu