Difference equation in the context of "State (controls)"

Play Trivia Questions online!

or

Skip to study material about Difference equation in the context of "State (controls)"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Difference equation in the context of State (controls)

In control engineering and system identification, a state-space representation is a mathematical model of a physical system that uses state variables to track how inputs shape system behavior over time through first-order differential equations or difference equations. These state variables change based on their current values and inputs, while outputs depend on the states and sometimes the inputs too. The state space (also called time-domain approach and equivalent to phase space in certain dynamical systems) is a geometric space where the axes are these state variables, and the system’s state is represented by a state vector.

For linear, time-invariant, and finite-dimensional systems, the equations can be written in matrix form, offering a compact alternative to the frequency domain’s Laplace transforms for multiple-input and multiple-output (MIMO) systems. Unlike the frequency domain approach, it works for systems beyond just linear ones with zero initial conditions. This approach turns systems theory into an algebraic framework, making it possible to use Kronecker structures for efficient analysis.

↓ Explore More Topics
In this Dossier

Difference equation in the context of Initial condition

In mathematics and particularly in dynamical systems, an initial condition is the initial value (often at time ) of a differential equation, difference equation, or other "time"-dependent equation which evolves in time. The most fundamental case, an ordinary differential equation of order k (the number of derivatives in the equation), generally requires k initial conditions to trace the equation's evolution through time. In other contexts, the term may refer to an initial value of a recurrence relation, discrete dynamical system, hyperbolic partial differential equation, or even a seed value of a pseudorandom number generator, at "time zero", enough such that the overall system can be evolved in "time", which may be discrete or continuous. The problem of determining a system's evolution from initial conditions is referred to as an initial value problem.

↑ Return to Menu

Difference equation in the context of Finite difference

A finite difference is a mathematical expression of the form f(x + b) βˆ’ f(x + a). Finite differences (or the associated difference quotients) are often used as approximations of derivatives, such as in numerical differentiation.

The difference operator, commonly denoted , is the operator that maps a function f to the function defined byA difference equation is a functional equation that involves the finite difference operator in the same way as a differential equation involves derivatives. There are many similarities between difference equations and differential equations. Certain recurrence relations can be written as difference equations by replacing iteration notation with finite differences.

↑ Return to Menu