Starlight in the context of "Meteor"

Play Trivia Questions online!

or

Skip to study material about Starlight in the context of "Meteor"

Ad spacer

⭐ Core Definition: Starlight

Starlight is the light emitted by stars. It typically refers to visible electromagnetic radiation from stars other than the Sun, observable from Earth at night, although a component of starlight is observable from Earth during daytime.

Sunlight is the term used for the Sun's starlight observed during daytime. During nighttime, albedo describes solar reflections from other Solar System objects, including moonlight, planetshine, and zodiacal light.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Starlight in the context of Night sky

The night sky is the nighttime appearance of celestial objects like stars, planets, and the Moon, which are visible in a clear sky between sunset and sunrise, when the Sun is below the horizon.

Natural light sources in a night sky include moonlight, starlight, and airglow, depending on location and timing. Aurorae light up the skies above the polar circles. Occasionally, a large coronal mass ejection from the Sun or simply high levels of solar wind may extend the phenomenon toward the Equator.

↑ Return to Menu

Starlight in the context of Night

Night, or nighttime, is the period of darkness when the Sun is below the horizon. Daylight illuminates one side of the Earth, leaving the other in darkness. The opposite of nighttime is daytime. Earth's rotation causes the appearance of sunrise and sunset. Moonlight, airglow, starlight, and light pollution dimly illuminate night. The duration of day, night, and twilight varies depending on the time of year and the latitude. Night on other celestial bodies is affected by their rotation and orbital periods. The planets Mercury and Venus have much longer nights than Earth. On Venus, night lasts about 58 Earth days. The Moon's rotation is tidally locked, rotating so that one of the sides of the Moon always faces Earth. Nightfall across portions of the near side of the Moon results in lunar phases visible from Earth.

Organisms respond to the changes brought by nightfall: darkness, increased humidity, and lower temperatures. Their responses include direct reactions and adjustments to circadian rhythms governed by an internal biological clock. These circadian rhythms, regulated by exposure to light and darkness, affect an organism's behavior and physiology. Animals more active at night are called nocturnal and have adaptations for low light, including different forms of night vision and the heightening of other senses. Diurnal animals are active during the day and sleep at night; mammals, birds, and some others dream while asleep. Fungi respond directly to nightfall and increase their biomass. With some exceptions, fungi do not rely on a biological clock. Plants store energy produced through photosynthesis as starch granules to consume at night. Algae engage in a similar process, and cyanobacteria transition from photosynthesis to nitrogen fixation after sunset. In arid environments like deserts, plants evolved to be more active at night, with many gathering carbon dioxide overnight for daytime photosynthesis. Night-blooming cacti rely on nocturnal pollinators such as bats and moths for reproduction. Light pollution disrupts the patterns in ecosystems and is especially harmful to night-flying insects.

↑ Return to Menu

Starlight in the context of Speed of light

The speed of light in vacuum, often called simply speed of light and commonly denoted c, is a universal physical constant exactly equal to 299,792,458 metres per second (approximately 1 billion kilometres per hour; 700 million miles per hour). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time interval of 1299792458 second. The speed of light is the same for all observers, no matter their relative velocity. It is the upper limit for the speed at which information, matter, or energy can travel through space.

All forms of electromagnetic radiation, including visible light, travel in vacuum at the speed c. For many practical purposes, light and other electromagnetic waves will appear to propagate instantaneously, but for long distances and sensitive measurements, their finite speed has noticeable effects. Much starlight viewed on Earth is from the distant past, allowing humans to study the history of the universe by viewing distant objects. When communicating with distant space probes, it can take hours for signals to travel. In computing, the speed of light fixes the ultimate minimum communication delay. The speed of light can be used in time of flight measurements to measure large distances to extremely high precision.

↑ Return to Menu

Starlight in the context of Airglow

Airglow is a faint emission of light by a planetary atmosphere. In the case of Earth's atmosphere, this optical phenomenon causes the night sky never to be completely dark, even after the effects of starlight and diffused sunlight from the far side are removed. This phenomenon originates with self-illuminated gases and has no relationship with Earth's magnetism or sunspot activity, causing aurorae.

Airglow occurs in two forms, as a result of a pair of interlinked but different processes. Dayglow occurs during the day and is caused by the splitting of atmospheric molecules but is too faint to be seen in daylight. During the night airglow occurs as nightglow, when the molecules split during daytime recombine.

↑ Return to Menu

Starlight in the context of Absorption spectroscopy

Absorption spectroscopy is spectroscopy that involves techniques that measure the absorption of electromagnetic radiation, as a function of frequency or wavelength, due to its interaction with a sample. The sample absorbs energy, i.e., photons, from the radiating field. The intensity of the absorption varies as a function of frequency, and this variation is the absorption spectrum. Absorption spectroscopy is performed across the electromagnetic spectrum.

Absorption spectroscopy is employed as an analytical chemistry tool to determine the presence of a particular substance in a sample and, in many cases, to quantify the amount of the substance present. Infrared and ultraviolet–visible spectroscopy are particularly common in analytical applications. Absorption spectroscopy is also employed in studies of molecular and atomic physics, astronomical spectroscopy and remote sensing.

↑ Return to Menu

Starlight in the context of Skyglow

Skyglow (or sky glow) is the diffuse luminance of the night sky, apart from discrete light sources such as the Moon and visible individual stars. It is a commonly noticed aspect of light pollution. While usually referring to luminance arising from artificial lighting, skyglow may also involve any scattered light seen at night, including natural ones like starlight, zodiacal light, and airglow.

In the context of light pollution, skyglow arises from the use of artificial light sources, including electrical (or rarely gas) lighting used for illumination and advertisement and from gas flares. Light propagating into the atmosphere directly from upward-directed or incompletely shielded sources, or after reflection from the ground or other surfaces, is partially scattered back toward the ground, producing a diffuse glow that is visible from great distances. Skyglow from artificial lights is most often noticed as a glowing dome of light over cities and towns, yet is pervasive throughout the developed world.

↑ Return to Menu