Stack (abstract data type) in the context of Stack trace


Stack (abstract data type) in the context of Stack trace

Stack (abstract data type) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Stack (abstract data type) in the context of "Stack trace"


⭐ Core Definition: Stack (abstract data type)

In computer science, a stack is an abstract data type that serves as a collection of elements with two main operations:

  • Push, which adds an element to the collection, and
  • Pop, which removes the most recently added element.

Additionally, a peek operation can, without modifying the stack, return the value of the last element added (the item at the top of the stack). The name stack is an analogy to a set of physical items stacked one atop another, such as a stack of plates.

↓ Menu
HINT:

👉 Stack (abstract data type) in the context of Stack trace

In computing, a stack trace (also called stack backtrace or stack traceback) is a report of the active stack frames at a certain point in time during the execution of a program. When a program is run, memory is often dynamically allocated in two places: the stack and the heap. Memory is continuously allocated on a stack but not on a heap. Stack also refers to a programming construct, thus to differentiate it, this stack is referred to as the program's function call stack. Technically, once a block of memory has been allocated on the stack, it cannot be easily removed as there can be other blocks of memory that were allocated after it. Each time a function is called in a program, a block of memory called an activation record is allocated on top of the call stack. Generally, the activation record stores the function's arguments and local variables. What exactly it contains and how it's laid out is determined by the calling convention.

Programmers commonly use stack tracing during interactive and post-mortem debugging. End-users may see a stack trace displayed as part of an error message, which the user can then report to a programmer.

↓ Explore More Topics
In this Dossier

Stack (abstract data type) in the context of Intermediate representation

An intermediate representation (IR) is the data structure or code used internally by a compiler or virtual machine to represent source code. An IR is designed to be conducive to further processing, such as optimization and translation. A "good" IR must be accurate – capable of representing the source code without loss of information – and independent of any particular source or target language. An IR may take one of several forms: an in-memory data structure, or a special tuple- or stack-based code readable by the program. In the latter case it is also called an intermediate language.

A canonical example is found in most modern compilers. For example, the CPython interpreter transforms the linear human-readable text representing a program into an intermediate graph structure that allows flow analysis and re-arrangement before execution. Use of an intermediate representation such as this allows compiler systems like the GNU Compiler Collection and LLVM to be used by many different source languages to generate code for many different target architectures.

View the full Wikipedia page for Intermediate representation
↑ Return to Menu

Stack (abstract data type) in the context of Abstract data type

In computer science, an abstract data type (ADT) is a mathematical model for data types, defined by its behavior (semantics) from the point of view of a user of the data, specifically in terms of possible values, possible operations on data of this type, and the behavior of these operations. This mathematical model contrasts with data structures, which are concrete representations of data, and are the point of view of an implementer, not a user. For example, a stack has push/pop operations that follow a Last-In-First-Out rule, and can be concretely implemented using either a list or an array. Another example is a set which stores values, without any particular order, and no repeated values. Values themselves are not retrieved from sets; rather, one tests a value for membership to obtain a Boolean "in" or "not in".

ADTs are a theoretical concept, used in formal semantics and program verification and, less strictly, in the design and analysis of algorithms, data structures, and software systems. Most mainstream computer languages do not directly support formally specifying ADTs. However, various language features correspond to certain aspects of implementing ADTs, and are easily confused with ADTs proper; these include abstract types, opaque data types, protocols, and design by contract. For example, in modular programming, the module declares procedures that correspond to the ADT operations, often with comments that describe the constraints. This information hiding strategy allows the implementation of the module to be changed without disturbing the client programs, but the module only informally defines an ADT. The notion of abstract data types is related to the concept of data abstraction, important in object-oriented programming and design by contract methodologies for software engineering.

View the full Wikipedia page for Abstract data type
↑ Return to Menu

Stack (abstract data type) in the context of Call stack

In computer science, a call stack is a stack data structure that stores information about the active subroutines and inline blocks of a computer program. This type of stack is also known as an execution stack, program stack, control stack, run-time stack, or machine stack, and is often shortened to simply the "stack". Although maintenance of the call stack is important for the proper functioning of most software, the details are normally hidden and automatic in high-level programming languages. Many computer instruction sets provide special instructions for manipulating stacks.

A call stack is used for several related purposes, but the main reason for having one is to keep track of the point to which each active subroutine should return control when it finishes executing. An active subroutine is one that has been called, but is yet to complete execution, after which control should be handed back to the point of call. Such activations of subroutines may be nested to any level (recursive as a special case), hence the stack structure. For example, if a subroutine DrawSquare calls a subroutine DrawLine from four different places, DrawLine must know where to return when its execution completes. To accomplish this, the address following the instruction that jumps to DrawLine, the return address, is pushed onto the top of the call stack as part of each call.

View the full Wikipedia page for Call stack
↑ Return to Menu