Spinodal decomposition in the context of "Diffusion"

Play Trivia Questions online!

or

Skip to study material about Spinodal decomposition in the context of "Diffusion"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Spinodal decomposition in the context of Diffusion

Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, as in spinodal decomposition. Diffusion is a stochastic process due to the inherent randomness of the diffusing entity and can be used to model many real-life stochastic scenarios. Therefore, diffusion and the corresponding mathematical models are used in several fields beyond physics, such as statistics, probability theory, information theory, neural networks, finance, and marketing.

The concept of diffusion is widely used in many fields, including physics (particle diffusion), chemistry, biology, sociology, economics, statistics, data science, and finance (diffusion of people, ideas, data and price values). The central idea of diffusion, however, is common to all of these: a substance or collection undergoing diffusion spreads out from a point or location at which there is a higher concentration of that substance or collection.

↓ Explore More Topics
In this Dossier

Spinodal decomposition in the context of Phase separation

Phase separation is the creation of two distinct phases from a single homogeneous mixture. The most common type of phase separation occurs between two immiscible liquids, such as oil and water. This type of phase separation is known as liquid-liquid equilibrium. Colloids are formed by phase separation, though not all phase separations form colloids - for example, oil and water can form separated layers under gravity rather than remaining as microscopic droplets in suspension.

A common form of spontaneous phase separation is termed spinodal decomposition; Cahn–Hilliard equation describes it. Regions of a phase diagram in which phase separation occurs are called miscibility gaps. There are two boundary curves of note: the binodal coexistence curve and the spinodal curve. On one side of the binodal, mixtures are absolutely stable. In between the binodal and the spinodal, mixtures may be metastable: staying mixed (or unmixed) in the absence of some large disturbance. The region beyond the spinodal curve is absolutely unstable, and (if starting from a mixed state) will spontaneously phase-separate.

↑ Return to Menu