Spherical harmonics in the context of P orbital


Spherical harmonics in the context of P orbital

Spherical harmonics Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Spherical harmonics in the context of "P orbital"


⭐ Core Definition: Spherical harmonics

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.

Since the spherical harmonics form a complete set of orthogonal functions and thus an orthonormal basis, certain functions defined on the surface of a sphere can be written as a sum of these spherical harmonics. This is similar to periodic functions defined on a circle that can be expressed as a sum of circular functions (sines and cosines) via Fourier series. Like the sines and cosines in Fourier series, the spherical harmonics may be organized by (spatial) angular frequency, as seen in the rows of functions in the illustration on the right. Further, spherical harmonics are basis functions for irreducible representations of SO(3), the group of rotations in three dimensions, and thus play a central role in the group theoretic discussion of SO(3).

↓ Menu
HINT:

In this Dossier

Spherical harmonics in the context of Earth Gravitational Model

The Earth Gravitational Models (EGM) are a series of geopotential models of the Earth published by the National Geospatial-Intelligence Agency (NGA). They are used as the geoid reference in the World Geodetic System.

The NGA provides the models in two formats: as the series of numerical coefficients to the spherical harmonics which define the model, or a dataset giving the geoid height at each coordinate at a given resolution.

View the full Wikipedia page for Earth Gravitational Model
↑ Return to Menu

Spherical harmonics in the context of Atomic orbital

In quantum mechanics, an atomic orbital (/ˈɔːrbɪtəl/ ) is a function describing the location and wave-like behavior of an electron in an atom. This function describes an electron's charge distribution around the atom's nucleus, and can be used to calculate the probability of finding an electron in a specific region around the nucleus.

Each orbital in an atom is characterized by a set of values of three quantum numbers n, , and m, which respectively correspond to an electron's energy, its orbital angular momentum, and its orbital angular momentum projected along a chosen axis (magnetic quantum number). The orbitals with a well-defined magnetic quantum number are generally complex-valued. Real-valued orbitals can be formed as linear combinations of m and −m orbitals, and are often labeled using associated harmonic polynomials (e.g., xy, xy) which describe their angular structure.

View the full Wikipedia page for Atomic orbital
↑ Return to Menu

Spherical harmonics in the context of Geopotential model

In geophysics and physical geodesy, a geopotential model is the theoretical analysis of measuring and calculating the effects of Earth's gravitational field (the geopotential).The Earth is not exactly spherical, mainly because of its rotation around the polar axis that makes its shape slightly oblate. However, a spherical harmonics series expansion captures the actual field with increasing fidelity.

If Earth's shape were perfectly known together with the exact mass density ρ = ρ(x, y, z), it could be integrated numerically (when combined with a reciprocal distance kernel) to find an accurate model for Earth's gravitational field. However, the situation is in fact the opposite: by observing the orbits of spacecraft and the Moon, Earth's gravitational field can be determined quite accurately. The best estimate of Earth's mass is obtained by dividing the product GM as determined from the analysis of spacecraft orbit with a value for the gravitational constant G, determined to a lower relative accuracy using other physical methods.

View the full Wikipedia page for Geopotential model
↑ Return to Menu

Spherical harmonics in the context of Vector spherical harmonics

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

View the full Wikipedia page for Vector spherical harmonics
↑ Return to Menu