Solutions of the Einstein field equations in the context of "Wormhole"

Play Trivia Questions online!

or

Skip to study material about Solutions of the Einstein field equations in the context of "Wormhole"

Ad spacer

⭐ Core Definition: Solutions of the Einstein field equations

Solutions of the Einstein field equations are metrics of spacetimes that result from solving the Einstein field equations (EFE) of general relativity. Solving the field equations gives a Lorentz manifold. Solutions are broadly classed as exact or non-exact.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Solutions of the Einstein field equations in the context of Wormhole

A wormhole is a hypothetical structure that connects disparate points in spacetime. It can be visualized as a tunnel with two ends at separate points in spacetime (i.e., different locations, different points in time, or both). Wormholes are based on a special solution of the Einstein field equations.Wormholes are consistent with the general theory of relativity, but whether they actually exist is unknown. Many physicists postulate that wormholes are merely projections of a fourth spatial dimension, analogous to how a two-dimensional (2D) being could experience only part of a three-dimensional (3D) object.

In 1995, Matt Visser suggested there may be many wormholes in the universe if cosmic strings with negative mass were generated in the early universe. Some physicists, such as Kip Thorne, have suggested how to create wormholes artificially.

↓ Explore More Topics
In this Dossier

Solutions of the Einstein field equations in the context of BKL singularity

A Belinski–Khalatnikov–Lifshitz (BKL) singularity is a model of the dynamic evolution of the universe near the initial gravitational singularity, described by an anisotropic, chaotic solution of the Einstein field equation of gravitation. According to this model, the universe is chaotically oscillating around a gravitational singularity in which time and space become equal to zero or, equivalently, the spacetime curvature becomes infinitely big. This singularity is physically real in the sense that it is a necessary property of the solution, and will appear also in the exact solution of those equations. The singularity is not artificially created by the assumptions and simplifications made by the other special solutions such as the Friedmann–Lemaître–Robertson–Walker, quasi-isotropic, and Kasner solutions.

The model is named after its authors Vladimir Belinski, Isaak Khalatnikov, and Evgeny Lifshitz, then working at the Landau Institute for Theoretical Physics.

↑ Return to Menu

Solutions of the Einstein field equations in the context of Exact solutions in general relativity

In general relativity, an exact solution is a (typically closed form) solution of the Einstein field equations whose derivation does not invoke simplifying approximations of the equations, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter. Mathematically, finding an exact solution means finding a Lorentzian manifold equipped with tensor fields modeling states of ordinary matter, such as a fluid, or classical non-gravitational fields such as the electromagnetic field.

↑ Return to Menu