Solar physics in the context of "Solar prominence"

Play Trivia Questions online!

or

Skip to study material about Solar physics in the context of "Solar prominence"

Ad spacer

⭐ Core Definition: Solar physics

Solar physics is the branch of astrophysics that specializes in the study of the Sun. It intersects with many disciplines of pure physics and astrophysics.

Because the Sun is uniquely situated for close-range observing (other stars cannot be resolved with anything like the spatial or temporal resolution that the Sun can), there is a split between the related discipline of observational astrophysics (of distant stars) and observational solar physics.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Solar physics in the context of Solar prominence

In solar physics, a prominence, sometimes referred to as a filament, is a large plasma and magnetic field structure extending outward from the Sun's surface, often in a loop shape. Prominences are anchored to the Sun's surface in the much brighter photosphere, and extend outwards into the solar corona. While the corona consists of extremely hot plasma, prominences contain much cooler plasma, similar in composition to that of the chromosphere. Like the corona, solar prominences are only visible to the naked eye during a total solar eclipse.

Prominences form over timescales of about a day and may persist in the corona for several weeks or months, looping hundreds of thousands of kilometers into space. Some prominences may give rise to coronal mass ejections. Exact mechanism of prominence generation is an ongoing target of scientific research.

↓ Explore More Topics
In this Dossier

Solar physics in the context of Solid earth

Solid earth refers to "the earth beneath our feet" or terra firma, the planet's solid surface and its interior. It excludes the Earth's fluid envelopes, the atmosphere and hydrosphere (but includes the ocean basin), as well as the biosphere and interactions with the Sun.

Solid-earth science refers to the corresponding methods of study, a subset of Earth sciences, predominantly geophysics and geology, excluding aeronomy, atmospheric sciences, oceanography, hydrology, and ecology.

↑ Return to Menu

Solar physics in the context of Heliophysics

Heliophysics (from the prefix "helio", from Attic Greek hαΈ—lios, meaning Sun, and the noun "physics": the science of matter and energy and their interactions) is the physics of the Sun and its connection with the Solar System. NASA defines heliophysics as "(1) the comprehensive new term for the science of the Sun - Solar System Connection, (2) the exploration, discovery, and understanding of Earth's space environment, and (3) the system science that unites all of the linked phenomena in the region of the cosmos influenced by a star like our Sun."

Heliophysics is broader than Solar physics, that studies the Sun itself, including its interior, atmosphere, and magnetic fields. It concentrates on the Sun's effects on Earth and other bodies within the Solar System, as well as the changing conditions in space. It is primarily concerned with the magnetosphere, ionosphere, thermosphere, mesosphere, and upper atmosphere of the Earth and other planets. Heliophysics combines the science of the Sun, corona, heliosphere and geospace, and encompasses a wide variety of astronomical phenomena, including "cosmic rays and particle acceleration, space weather and radiation, dust and magnetic reconnection, nuclear energy generation and internal solar dynamics, solar activity and stellar magnetic fields, aeronomy and space plasmas, magnetic fields and global change", and the interactions of the Solar System with the Milky Way Galaxy.

↑ Return to Menu

Solar physics in the context of Astrophysics

Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline, James Keeler, said, astrophysics "seeks to ascertain the nature of the heavenly bodies, rather than their positions or motions in spaceβ€”what they are, rather than where they are", which is studied in celestial mechanics.

Among the subjects studied are the Sun (solar physics), other stars, galaxies, extrasolar planets, the interstellar medium, and the cosmic microwave background. Emissions from these objects are examined across all parts of the electromagnetic spectrum, and the properties examined include luminosity, density, temperature, and chemical composition. Because astrophysics is a very broad subject, astrophysicists apply concepts and methods from many disciplines of physics, including classical mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and molecular physics.

↑ Return to Menu

Solar physics in the context of Space climate

Space climate is the long-term variation in solar activity within the heliosphere, including the solar wind, the Interplanetary magnetic field (IMF), and their effects in the near-Earth environment, including the magnetosphere of Earth and the ionosphere, the upper and lower atmosphere, climate, and other related systems. The scientific study of space climate is an interdisciplinary field of space physics, solar physics, heliophysics, and geophysics. It is thus conceptually related to terrestrial climatology, and its effects on the atmosphere of Earth are considered in climate science.

↑ Return to Menu

Solar physics in the context of Active region

In solar physics and observation, an active region is a temporary feature in the Sun's atmosphere characterized by a strong and complex magnetic field. They are often associated with sunspots and are commonly the source of violent eruptions such as coronal mass ejections and solar flares. The number and location of active regions on the solar disk at any given time is dependent on the solar cycle.

↑ Return to Menu