Signal (electrical engineering) in the context of "Audio signal"

Play Trivia Questions online!

or

Skip to study material about Signal (electrical engineering) in the context of "Audio signal"

Ad spacer

⭐ Core Definition: Signal (electrical engineering)

A signal is both the process and the result of transmission of data over some media accomplished by embedding some variation. Signals are important in multiple subject fields, including signal processing, information theory and biology.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Signal (electrical engineering) in the context of Image sensor

An image sensor or imager is a device that detects and conveys information used to form an image. It does so by converting the variable attenuation of light waves (as they pass through or reflect off objects) into signals, small bursts of current that convey the information. The waves can be light or other electromagnetic radiation. Image sensors are used in electronic imaging devices of both analog and digital types, which include digital cameras, camera modules, camera phones, optical mouse devices, medical imaging equipment, night vision equipment such as thermal imaging devices, radar, sonar, and others. As technology changes, electronic and digital imaging tends to replace chemical and analog imaging.

The two main types of electronic image sensors are the charge-coupled device (CCD) and the active-pixel sensor (CMOS sensor). Both CCD and CMOS sensors are based on metal–oxide–semiconductor (MOS) technology, with CCDs based on MOS capacitors and CMOS sensors based on MOSFET (MOS field-effect transistor) amplifiers. Analog sensors for invisible radiation tend to involve vacuum tubes of various kinds, while digital sensors include flat-panel detectors.

↑ Return to Menu

Signal (electrical engineering) in the context of Digitizing

Digitization is the process of converting information into a digital (i.e. computer-readable) format. The result is the representation of an object, image, sound, document, or signal (usually an analog signal) obtained by generating a series of numbers that describe a discrete set of points or samples. The result is called digital representation or, more specifically, a digital image, for the object, and digital form, for the signal. In modern practice, the digitized data is in the form of binary numbers, which facilitates processing by digital computers and other operations, but digitizing simply means "the conversion of analog source material into a numerical format"; the decimal or any other number system can be used instead.

Digitization is of crucial importance to data processing, storage, and transmission, because it "allows information of all kinds in all formats to be carried with the same efficiency and also intermingled." Though analog data is typically more stable, digital data has the potential to be more easily shared and accessed and, in theory, can be propagated indefinitely without generation loss, provided it is migrated to new, stable formats as needed. This potential has led to institutional digitization projects designed to improve access and the rapid growth of the digital preservation field.

↑ Return to Menu

Signal (electrical engineering) in the context of Digital imaging

Digital imaging or digital image acquisition is the creation of a digital representation of the visual characteristics of an object, such as a physical scene or the interior structure of an object. The term is often assumed to imply or include the processing, compression, storage, printing and display of such images. A key advantage of a digital image, versus an analog image such as a film photograph, is the ability to digitally propagate copies of the original subject indefinitely without any loss of image quality.

Digital imaging can be classified by the type of electromagnetic radiation or other waves whose variable attenuation, as they pass through or reflect off objects, conveys the information that constitutes the image. In all classes of digital imaging, the information is converted by image sensors into digital signals that are processed by a computer and made output as a visible-light image. For example, the medium of visible light allows digital photography (including digital videography) with various kinds of digital cameras (including digital video cameras). X-rays allow digital X-ray imaging (digital radiography, fluoroscopy, and CT), and gamma rays allow digital gamma ray imaging (digital scintigraphy, SPECT, and PET). Sound allows ultrasonography (such as medical ultrasonography) and sonar, and radio waves allow radar. Digital imaging lends itself well to image analysis by software, as well as to image editing (including image manipulation).

↑ Return to Menu

Signal (electrical engineering) in the context of Low-pass filter

A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency. The exact frequency response of the filter depends on the filter design. The filter is sometimes called a high-cut filter, or treble-cut filter in audio applications. A low-pass filter is the complement of a high-pass filter.

In optics, high-pass and low-pass may have different meanings, depending on whether referring to the frequency or wavelength of light, since these variables are inversely related. High-pass frequency filters would act as low-pass wavelength filters, and vice versa. For this reason, it is a good practice to refer to wavelength filters as short-pass and long-pass to avoid confusion, which would correspond to high-pass and low-pass frequencies.

↑ Return to Menu

Signal (electrical engineering) in the context of Transmission system

In telecommunications, a transmission system is a communication system that transmits a signal from one place to another. The signal can be an electrical, optical or radio signal. The goal of a transmission system is to transmit data accurately and efficiently from point A to point B over a distance, using a variety of technologies such as copper cable and fiber-optic cables, satellite links, and wireless communication technologies.

The International Telecommunication Union (ITU) and the European Telecommunications Standards Institute (ETSI) define a transmission system as the interface and medium through which peer physical layer entities transfer bits. It encompasses all the components and technologies involved in transmitting digital data from one location to another, including modems, cables, and other networking equipment.Some transmission systems contain multipliers, which amplify a signal prior to re-transmission, or regenerators, which attempt to reconstruct and re-shape the coded message before re-transmission.

↑ Return to Menu

Signal (electrical engineering) in the context of Interference (communication)

In telecommunications, an interference is that which modifies a signal in a disruptive manner, as it travels along a communication channel between its source and receiver. The term is often used to refer to the addition of unwanted signals to a useful signal. Common examples include:

Noise is a form of interference but not all interference is noise.

↑ Return to Menu