Siemens (unit) in the context of "Electrical resistance and conductance"

Play Trivia Questions online!

or

Skip to study material about Siemens (unit) in the context of "Electrical resistance and conductance"

Ad spacer

⭐ Core Definition: Siemens (unit)

The siemens (symbol: S) is the unit of electric conductance, electric susceptance, and electric admittance in the International System of Units (SI). Conductance, susceptance, and admittance are the reciprocals of resistance, reactance, and impedance respectively; hence one siemens is equal to the reciprocal of one ohm (Ω) and is also referred to as the mho. The siemens was adopted by the IEC in 1935, and the 14th General Conference on Weights and Measures approved the addition of the siemens as a derived unit in 1971.

The unit is named after Ernst Werner von Siemens. In English, the same word siemens is used both for the singular and plural. Like other SI units named after people, the name of the unit (siemens) is not capitalized. Its symbol (S), however, is capitalized to distinguish it from the second, whose symbol (s) is lower case.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Siemens (unit) in the context of Electrical resistance and conductance

The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is electrical conductance, measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels with mechanical friction. The SI unit of electrical resistance is the ohm (Ω), while electrical conductance is measured in siemens (S) (formerly called the 'mho' and then represented by ).

The resistance of an object depends in large part on the material it is made of. Objects made of electrical insulators like rubber tend to have very high resistance and low conductance, while objects made of electrical conductors like metals tend to have very low resistance and high conductance. This relationship is quantified by resistivity or conductivity. The nature of a material is not the only factor in resistance and conductance, however; it also depends on the size and shape of an object because these properties are extensive rather than intensive. For example, a wire's resistance is higher if it is long and thin, and lower if it is short and thick. All objects resist electrical current, except for superconductors, which have a resistance of zero.

↓ Explore More Topics
In this Dossier

Siemens (unit) in the context of Electrical resistivity and conductivity

Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current. Resistivity is commonly represented by the Greek letter ρ (rho). The SI unit of electrical resistivity is the ohm-metre (Ω⋅m). For example, if a 1 m solid cube of material has sheet contacts on two opposite faces, and the resistance between these contacts is 1 Ω, then the resistivity of the material is 1 Ω⋅m.

Electrical conductivity (or specific conductance) is the reciprocal of electrical resistivity. It represents a material's ability to conduct electric current. It is commonly signified by the Greek letter σ (sigma), but κ (kappa) (especially in electrical engineering) and γ (gamma) are sometimes used. The SI unit of electrical conductivity is siemens per metre (S/m). Resistivity and conductivity are intensive properties of materials, giving the opposition of a standard cube of material to current. Electrical resistance and conductance are corresponding extensive properties that give the opposition of a specific object to electric current.

↑ Return to Menu

Siemens (unit) in the context of Ion conductivity

Ionic conductivity (denoted by λ) is the movement of ions through a solid material, a phenomenon central to solid-state ionics. It is denoted by λ and measured in siemens per meter (S/m). While perfect crystals of inorganic compounds are typically electrical insulators, ionic conduction arises when defects are introduced—either intrinsically through thermal activation or extrinsically via doping with aliovalent impurities. These defects enable ion migration by providing pathways through the crystal lattice. Solid ionic conductors, known as solid electrolytes, are critical components in technologies such as all-solid-state batteries, supercapacitors, fuel cells, and thin-film microelectronic devices. The ionic conductivity (σ) follows an Arrhenius-type relationship with temperature, governed by activation energy barriers influenced by crystal structure and defect chemistry. Ionic conduction is one mechanism of current.

↑ Return to Menu