Shadow in the context of Soft light


Shadow in the context of Soft light

Shadow Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Shadow in the context of "Soft light"


⭐ Core Definition: Shadow

A shadow is a dark area on a surface where light from a light source is blocked by an object. In contrast, shade occupies the three-dimensional volume behind an object with light in front of it. The cross-section of a shadow is a two-dimensional silhouette, or a reverse projection of the object blocking the light.

↓ Menu
HINT:

👉 Shadow in the context of Soft light

Hard and soft light are different types of lighting that are commonly used in photography and filmmaking. Soft light is light that tends to "wrap" around objects, projecting diffused shadows with soft edges, whereas hard light is more focused and produces harsher shadows.

The hardness or softness of light depends mostly on three features of the source: the size of its surface, its distance from the object, and the thickness of its diffusion material. A large, distant light source with thick diffusion material will produce softer lighting than one that is smaller and closer to the subject, with thinner diffusion material.

↓ Explore More Topics
In this Dossier

Shadow in the context of Sundial

A sundial is a horological device that tells the time of day (referred to as civil time in modern usage) when direct sunlight shines by the apparent position of the Sun in the sky. In the narrowest sense of the word, it consists of a flat plate (the dial) and a gnomon, which casts a shadow onto the dial. As the Sun appears to move through the sky, the shadow aligns with different hour-lines, which are marked on the dial to indicate the time of day. The style is the time-telling edge of the gnomon, though a single point or nodus may be used. The gnomon casts a broad shadow; the shadow of the style shows the time. The gnomon may be a rod, wire, or elaborately decorated metal casting. The style must be parallel to the axis of the Earth's rotation for the sundial to be accurate throughout the year. The style's angle from horizontal is equal to the sundial's geographical latitude.

The term sundial can refer to any device that uses the Sun's altitude or azimuth (or both) to show the time. Sundials are valued as decorative objects, metaphors, and objects of intrigue and mathematical study.

View the full Wikipedia page for Sundial
↑ Return to Menu

Shadow in the context of Dry season

The dry season is a yearly period of low rainfall, especially in the tropics. The weather in the tropics is dominated by the tropical rain belt, which moves from the northern to the southern tropics and back over the course of the year. The temperate counterpart to the tropical dry season is summer or winter.

View the full Wikipedia page for Dry season
↑ Return to Menu

Shadow in the context of Gnomon

A gnomon (/ˈnˌmɒn, -mən/; from Ancient Greek γνώμων (gnṓmōn) 'one that knows or examines') is the part of a sundial that casts a shadow. The term is used for a variety of purposes in mathematics and other fields, typically to measure directions, position, or time.

View the full Wikipedia page for Gnomon
↑ Return to Menu

Shadow in the context of Subsolar point

The subsolar point on a planet or a moon is the point at which its Sun is perceived to be directly overhead (at the zenith); that is, where the Sun's rays strike the planet exactly perpendicular to its surface. The subsolar point occurs at the location on a planet or a moon where the Sun culminates at the location's zenith. This occurs at solar noon. At this point, the Sun's rays will fall exactly vertical relative to an object on the ground and thus cast no observable shadow.

To an observer on a planet with an orientation and rotation similar to those of Earth, the subsolar point will appear to move westward with a speed of 1600 km/h, completing one circuit around the globe each day, approximately moving along the equator. However, it will also move north and south between the tropics over the course of a year, so will appear to spiral like a helix.

View the full Wikipedia page for Subsolar point
↑ Return to Menu

Shadow in the context of Sunbeam

A sunbeam, in meteorological optics, is a beam of sunlight that appears to radiate from the position of the Sun. Shining through openings in clouds or between other objects such as mountains and buildings, these beams of particle-scattered sunlight are essentially parallel shafts separated by darker shadowed volumes. Their apparent convergence in the sky is a visual illusion from linear perspective. The same illusion causes the apparent convergence of parallel lines on a long straight road or hallway at a distant vanishing point. The scattering particles that make sunlight visible may be air molecules or particulates.

View the full Wikipedia page for Sunbeam
↑ Return to Menu

Shadow in the context of Antisolar point

The antisolar point is the abstract point on the celestial sphere directly opposite the Sun from an observer's perspective. This means that the antisolar point lies above the horizon when the Sun is below it, and vice versa. On a sunny day, the antisolar point can be easily found; it is located within the shadow of the observer's head. Like the zenith and nadir, the antisolar point is not fixed in three-dimensional space, but is defined relative to the observer. Each observer has an antisolar point that moves as the observer changes position.

The antisolar point forms the geometric center of several optical phenomena, including subhorizon haloes, rainbows, glories, the Brocken spectre, and heiligenschein. Occasionally, around sunset or sunrise, anticrepuscular rays appear to converge toward the antisolar point near the horizon. However, this is an optical illusion caused by perspective; in reality, the "rays" (i.e. bands of shadow) run near-parallel to each other.

View the full Wikipedia page for Antisolar point
↑ Return to Menu

Shadow in the context of Umbra

The umbra, penumbra and antumbra are three distinct parts of a shadow, created by any light source after impinging on an opaque object of lesser size. In cases of equal or smaller impinging objects, only an umbra and penumbra are generated. Assuming no diffraction, for a collimated beam (such as a point source) of light, only the umbra is cast.

These phenomena are generally observed within solar systems, as the size of the stars within the system are larger than the orbiting satellites, hence these terms are most often used for the shadows cast by celestial bodies, though they are sometimes used to describe levels of darkness, such as in sunspots.

View the full Wikipedia page for Umbra
↑ Return to Menu

Shadow in the context of Earth's shadow

Earth's shadow (or Earth shadow) is the shadow that Earth itself casts through its atmosphere and into outer space, toward the antisolar point. During the twilight period (both early dusk and late dawn), the shadow's visible fringe —sometimes called the dark segment or twilight wedge—appears as a dark and diffuse band just above the horizon, most distinct when the sky is clear.

Since the angular diameters of the Sun and the Moon as viewed from Earth's surface are almost the same, the ratio of the length of Earth's shadow to the distance between Earth and the Moon will be almost equal to the ratio of the diameters of Earth and the Moon.

View the full Wikipedia page for Earth's shadow
↑ Return to Menu

Shadow in the context of Lahaina Noon

Lāhainā Noon, also known as a zero shadow day, is a semi-annual tropical solar phenomenon when the Sun culminates at the zenith at solar noon, passing directly overhead. As a result, the sun's rays will fall exactly vertical relative to an object on the ground and cast no observable shadow. When this occurs at a given location, the location is Earth's subsolar point. A zero shadow day occurs twice a year for locations in the tropics (between the Tropic of Cancer at approximate latitude 23.4° N and the Tropic of Capricorn at approximately 23.4° S) when the Sun's declination becomes equal to the latitude of the location, so that the date varies by location. The term "Lāhainā Noon" was initiated by the Bishop Museum in Hawaii.

View the full Wikipedia page for Lahaina Noon
↑ Return to Menu

Shadow in the context of Glory (optical phenomenon)

A glory is an optical phenomenon, resembling an iconic saint's halo around the shadow of the observer's head, caused by sunlight or (more rarely) moonlight interacting with the tiny water droplets that comprise mist or clouds. The glory consists of one or more concentric, successively dimmer rings, each of which is red on the outside and bluish towards the centre. Due to its appearance, the phenomenon is sometimes mistaken for a circular rainbow, but the latter has a much larger diameter and is caused by different physical processes.

Glories arise due to wave interference of light internally refracted within small droplets.

View the full Wikipedia page for Glory (optical phenomenon)
↑ Return to Menu

Shadow in the context of Floater

Floaters or eye floaters are sometimes-visible deposits (e.g., the shadows of tiny structures of protein or other cell debris projected onto the retina) within the eye's vitreous humour ("the vitreous"), which is normally transparent, or between the vitreous and retina.They can become particularly noticeable when looking at a blank surface or an open monochromatic space, such as a blue sky.Each floater can be measured by its size, shape, consistency, refractive index, and motility. They are also called muscae volitantes (Latin for 'flying flies'), or mouches volantes (from the same phrase in French). The vitreous usually starts out transparent, but imperfections may gradually develop as one ages. The common type of floater, present in most people's eyes, is due to these degenerative changes of the vitreous. The perception of floaters, which may be annoying or problematic to some people, is known as myodesopsia, or, less commonly, as myodaeopsia, myiodeopsia, or myiodesopsia. It is not often treated, except in severe cases, where vitrectomy (surgery) and laser vitreolysis may be effective.

Floaters are visible either because of the shadows that imperfections cast on the retina, or because of the refraction of light that passes through them, and can appear alone or together with several others as a clump in one's visual field. They may appear as spots, threads, or fragments of "cobwebs", which float slowly before the observer's eyes, and move especially in the direction the eyes move. As these objects exist within the eye itself, they are not optical illusions but are entoptic phenomena (caused by the eye itself). They are not to be confused with visual snow, which is similar to the static on a television screen, although these two conditions may coexist as part of a number of visual disturbances which include starbursts, trails, and afterimages.

View the full Wikipedia page for Floater
↑ Return to Menu

Shadow in the context of Shadow mapping

Shadow mapping or shadowing projection is a process by which shadows are added to 3D computer graphics. This concept was introduced by Lance Williams in 1978, in a paper entitled "Casting curved shadows on curved surfaces." Since then, it has been used both in pre-rendered and realtime scenes in many console and PC games.

Shadows are created by testing whether a pixel is visible from the light source, by comparing the pixel to a z-buffer or depth image of the light source's view, stored in the form of a texture.

View the full Wikipedia page for Shadow mapping
↑ Return to Menu