Setpoint (control system) in the context of Process variable


Setpoint (control system) in the context of Process variable

Setpoint (control system) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Setpoint (control system) in the context of "Process variable"


⭐ Core Definition: Setpoint (control system)

In cybernetics and control theory, a setpoint (SP; also set point) is the desired or target value for an essential variable, or process value (PV) of a control system, which may differ from the actual measured value of the variable. Departure of such a variable from its setpoint is one basis for error-controlled regulation using negative feedback for automatic control. A setpoint can be any physical quantity or parameter that a control system seeks to regulate, such as temperature, pressure, flow rate, position, speed, or any other measurable attribute.

In the context of PID controller, the setpoint represents the reference or goal for the controlled process variable. It serves as the benchmark against which the actual process variable (PV) is continuously compared. The PID controller calculates an error signal by taking the difference between the setpoint and the current value of the process variable. Mathematically, this error is expressed as:

↓ Menu
HINT:

👉 Setpoint (control system) in the context of Process variable

In control theory, a process variable (PV; also process value or process parameter) is the current measured value of a particular part of a process which is being monitored or controlled. An example of this would be the temperature of a furnace. The current temperature is the process variable, while the desired temperature is known as the set-point (SP).

↓ Explore More Topics
In this Dossier

Setpoint (control system) in the context of Control system

A control system manages, commands, directs, or regulates the behavior of other devices or systems using control loops. It can range from a single home heating controller using a thermostat controlling a domestic boiler to large industrial control systems which are used for controlling processes or machines. The control systems are designed via control engineering process.

For continuously modulated control, a feedback controller is used to automatically control a process or operation. The control system compares the value or status of the process variable (PV) being controlled with the desired value or setpoint (SP), and applies the difference as a control signal to bring the process variable output of the plant to the same value as the setpoint.

View the full Wikipedia page for Control system
↑ Return to Menu

Setpoint (control system) in the context of Thermostat

A thermostat is a regulating device component which senses the temperature of a physical system and performs actions so that the system's temperature is maintained near a desired setpoint.

Thermostats are used in any device or system that heats or cools to a setpoint temperature. Examples include building heating, central heating, air conditioners, HVAC systems, water heaters, as well as kitchen equipment including ovens and refrigerators and medical and scientific incubators. In scientific literature, these devices are often broadly classified as thermostatically controlled loads (TCLs). Thermostatically controlled loads comprise roughly 50% of the overall electricity demand in the United States.

View the full Wikipedia page for Thermostat
↑ Return to Menu

Setpoint (control system) in the context of Control theory

Control theory is a field of control engineering and applied mathematics that deals with the control of dynamical systems. The aim is to develop a model or algorithm governing the application of system inputs to drive the system to a desired state, while minimizing any delay, overshoot, or steady-state error and ensuring a level of control stability; often with the aim to achieve a degree of optimality.

To do this, a controller with the requisite corrective behavior is required. This controller monitors the controlled process variable (PV), and compares it with the reference or set point (SP). The difference between actual and desired value of the process variable, called the error signal, or SP-PV error, is applied as feedback to generate a control action to bring the controlled process variable to the same value as the set point. Other aspects which are also studied are controllability and observability. Control theory is used in control system engineering to design automation that have revolutionized manufacturing, aircraft, communications and other industries, and created new fields such as robotics.

View the full Wikipedia page for Control theory
↑ Return to Menu

Setpoint (control system) in the context of Proportional control

Proportional control, in engineering and process control, is a type of linear feedback control system in which a correction is applied to the controlled variable, and the size of the correction is proportional to the difference between the desired value (setpoint, SP) and the measured value (process variable, PV). Two classic mechanical examples are the toilet bowl float proportioning valve and the fly-ball governor.

The proportional control concept is more complex than an on–off control system such as a bi-metallic domestic thermostat, but simpler than a proportional–integral–derivative (PID) control system used in something like an automobile cruise control. On–off control will work where the overall system has a relatively long response time, but can result in instability if the system being controlled has a rapid response time. Proportional control overcomes this by modulating the output to the controlling device, such as a control valve at a level which avoids instability, but applies correction as fast as practicable by applying the optimum quantity of proportional gain.

View the full Wikipedia page for Proportional control
↑ Return to Menu

Setpoint (control system) in the context of Industrial control system

An industrial control system (ICS) is an electronic control system and associated instrumentation used for industrial process control. Control systems can range in size from a few modular panel-mounted controllers to large interconnected and interactive distributed control systems (DCSs) with many thousands of field connections. Control systems receive data from remote sensors measuring process variables (PVs), compare the collected data with desired setpoints (SPs), and derive command functions that are used to control a process through the final control elements (FCEs), such as control valves.

Larger systems are usually implemented by supervisory control and data acquisition (SCADA) systems, or DCSs, and programmable logic controllers (PLCs), though SCADA and PLC systems are scalable down to small systems with few control loops. Such systems are extensively used in industries such as chemical processing, pulp and paper manufacture, power generation, oil and gas processing, and telecommunications.

View the full Wikipedia page for Industrial control system
↑ Return to Menu

Setpoint (control system) in the context of Feedback controller

A closed-loop controller or feedback controller is a control loop which incorporates feedback, in contrast to an open-loop controller or non-feedback controller.A closed-loop controller uses feedback to control states or outputs of a dynamical system. Its name comes from the information path in the system: process inputs (e.g., voltage applied to an electric motor) have an effect on the process outputs (e.g., speed or torque of the motor), which is measured with sensors and processed by the controller; the result (the control signal) is "fed back" as input to the process, closing the loop.

In the case of linear feedback systems, a control loop including sensors, control algorithms, and actuators is arranged in an attempt to regulate a variable at a setpoint (SP). An everyday example is the cruise control on a road vehicle; where external influences such as hills would cause speed changes, and the driver has the ability to alter the desired set speed. The PID algorithm in the controller restores the actual speed to the desired speed in an optimum way, with minimal delay or overshoot, by controlling the power output of the vehicle's engine.Control systems that include some sensing of the results they are trying to achieve are making use of feedback and can adapt to varying circumstances to some extent. Open-loop control systems do not make use of feedback, and run only in pre-arranged ways.

View the full Wikipedia page for Feedback controller
↑ Return to Menu

Setpoint (control system) in the context of Supervisory control and data acquisition

Supervisory control and data acquisition (SCADA) is a control system architecture comprising computers, networked data communications and graphical user interfaces for high-level supervision of machines and processes. It also covers sensors and other devices, such as programmable logic controllers, also known as a distributed control system (DCS), which interface with process plant or machinery.

The operator interfaces, which enable monitoring and the issuing of process commands, such as controller setpoint changes, are handled through the SCADA computer system. The subordinated operations, e.g. the real-time control logic or controller calculations, are performed by networked modules connected to the field sensors and actuators.

View the full Wikipedia page for Supervisory control and data acquisition
↑ Return to Menu

Setpoint (control system) in the context of PID controller

A proportional–integral–derivative controller (PID controller or three-term controller) is a feedback-based control loop mechanism commonly used to manage machines and processes that require continuous control and automatic adjustment. It is typically used in industrial control systems and various other applications where constant control through modulation is necessary without human intervention. The PID controller automatically compares the desired target value (setpoint or SP) with the actual value of the system (process variable or PV). The difference between these two values is called the error value, denoted as .

It then applies corrective actions automatically to bring the PV to the same value as the SP using three methods: The proportional (P) component responds to the current error value by producing an output that is directly proportional to the magnitude of the error. This provides immediate correction based on how far the system is from the desired setpoint. The integral (I) component, in turn, considers the cumulative sum of past errors to address any residual steady-state errors that persist over time, eliminating lingering discrepancies. Lastly, the derivative (D) component predicts future error by assessing the rate of change of the error, which helps to mitigate overshoot and enhance system stability, particularly when the system undergoes rapid changes. The PID output signal can directly control actuators through voltage, current, or other modulation methods, depending on the application. The PID controller reduces the likelihood of human error and improves automation.

View the full Wikipedia page for PID controller
↑ Return to Menu

Setpoint (control system) in the context of Open-loop controller

In control theory, an open-loop controller, also called a non-feedback controller, is a control loop part of a control system in which the control action ("input" to the system) is independent of the "process output", which is the process variable that is being controlled. It does not use feedback to determine if its output has achieved the desired goal of the input command or process setpoint.

There are many open-loop controls, such as on/off switching of valves, machinery, lights, motors or heaters, where the control result is known to be approximately sufficient under normal conditions without the need for feedback. The advantage of using open-loop control in these cases is the reduction in component count and complexity. However, an open-loop system cannot correct any errors that it makes or correct for outside disturbances unlike a closed-loop control system.

View the full Wikipedia page for Open-loop controller
↑ Return to Menu