Seminorm in the context of Absolutely convex set


Seminorm in the context of Absolutely convex set

Seminorm Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Seminorm in the context of "Absolutely convex set"


⭐ Core Definition: Seminorm

In mathematics, particularly in functional analysis, a seminorm is like a norm but need not be positive definite. Seminorms are intimately connected with convex sets: every seminorm is the Minkowski functional of some absorbing disk and, conversely, the Minkowski functional of any such set is a seminorm.

A topological vector space is locally convex if and only if its topology is induced by a family of seminorms.

↓ Menu
HINT:

In this Dossier

Seminorm in the context of Magnitude (vector)

In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and zero is only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude or length of the vector. This norm can be defined as the square root of the inner product of a vector with itself.

A seminorm satisfies the first two properties of a norm but may be zero for vectors other than the origin. A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector space.

View the full Wikipedia page for Magnitude (vector)
↑ Return to Menu