Semigroup in the context of Free monoid


Semigroup in the context of Free monoid

Semigroup Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Semigroup in the context of "Free monoid"


HINT:

👉 Semigroup in the context of Free monoid

In abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences (or strings) of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero elements, often called the empty string and denoted by ε or λ, as the identity element. The free monoid on a set A is usually denoted A. The free semigroup on A is the subsemigroup of A containing all elements except the empty string. It is usually denoted A.

More generally, an abstract monoid (or semigroup) S is described as free if it is isomorphic to the free monoid (or semigroup) on some set.

↓ Explore More Topics
In this Dossier

Semigroup in the context of Normalizer

In mathematics, especially group theory, the centralizer (also called commutant) of a subset S in a group G is the set of elements of G that commute with every element of S, or equivalently, the set of elements such that conjugation by leaves each element of S fixed. The normalizer of S in G is the set of elements of G that satisfy the weaker condition of leaving the set fixed under conjugation. The centralizer and normalizer of S are subgroups of G. Many techniques in group theory are based on studying the centralizers and normalizers of suitable subsets S.

Suitably formulated, the definitions also apply to semigroups.

View the full Wikipedia page for Normalizer
↑ Return to Menu

Semigroup in the context of Semigroup action

In algebra and theoretical computer science, an action or act of a semigroup on a set is a rule which associates to each element of the semigroup a transformation of the set in such a way that the product of two elements of the semigroup (using the semigroup operation) is associated with the composite of the two corresponding transformations. The terminology conveys the idea that the elements of the semigroup are acting as transformations of the set. From an algebraic perspective, a semigroup action is a generalization of the notion of a group action in group theory. From the computer science point of view, semigroup actions are closely related to automata: the set models the state of the automaton and the action models transformations of that state in response to inputs.

An important special case is a monoid action or act, in which the semigroup is a monoid and the identity element of the monoid acts as the identity transformation of a set. From a category theoretic point of view, a monoid is a category with one object, and an act is a functor from that category to the category of sets. This immediately provides a generalization to monoid acts on objects in categories other than the category of sets.

View the full Wikipedia page for Semigroup action
↑ Return to Menu

Semigroup in the context of Commutative semigroup

In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ab = ba for all elements a and b in the semigroup.The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality. Members of the class of Brandt semigroups are required to satisfy not just one condition but a set of additional properties. A large collection of special classes of semigroups have been defined though not all of them have been studied equally intensively.

In the algebraic theory of semigroups, in constructing special classes, attention is focused only on those properties, restrictions and conditions which can be expressed in terms of the binary operations in the semigroups and occasionally on the cardinality and similar properties of subsets of the underlying set. The underlying sets are not assumed to carry any other mathematical structures like order or topology.

View the full Wikipedia page for Commutative semigroup
↑ Return to Menu