Seismology in the context of Interferometer


Seismology in the context of Interferometer

Seismology Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Seismology in the context of "Interferometer"


⭐ Core Definition: Seismology

Seismology (/szˈmɒləi, ss-/; from Ancient Greek σεισμός (seismós) meaning "earthquake" and -λογία (-logía) meaning "study of") is the scientific study of earthquakes (or generally, quakes) and the generation and propagation of elastic waves through planetary bodies. It also includes studies of the environmental effects of earthquakes such as tsunamis; other seismic sources such as volcanoes, plate tectonics, glaciers, rivers, oceanic microseisms, and the atmosphere; and artificial processes such as explosions.

Paleoseismology is a related field that uses geology to infer information regarding past earthquakes. A recording of Earth's motion as a function of time, created by a seismograph is called a seismogram. A seismologist is a scientist who works in basic or applied seismology.

↓ Menu
HINT:

In this Dossier

Seismology in the context of Digital signal processing

Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The digital signals processed in this manner are a sequence of numbers that represent samples of a continuous variable in a domain such as time, space, or frequency. In digital electronics, a digital signal is represented as a pulse train, which is typically generated by the switching of a transistor.

Digital signal processing and analog signal processing are subfields of signal processing. DSP applications include audio and speech processing, sonar, radar and other sensor array processing, spectral density estimation, statistical signal processing, digital image processing, data compression, video coding, audio coding, image compression, signal processing for telecommunications, control systems, biomedical engineering, and seismology, among others.

View the full Wikipedia page for Digital signal processing
↑ Return to Menu

Seismology in the context of Spectrogram

A spectrogram is a visual representation of the spectrum of frequencies of a signal as it varies with time. When applied to an audio signal, spectrograms are sometimes called sonographs, voiceprints, or voicegrams. When the data are represented in a 3D plot they may be called waterfall displays.

Spectrograms are used extensively in the fields of music, linguistics, sonar, radar, speech processing, seismology, ornithology, and others. Spectrograms of audio can be used to identify spoken words phonetically, and to analyse the various calls of animals.

View the full Wikipedia page for Spectrogram
↑ Return to Menu

Seismology in the context of Seismic wave

A seismic wave is a mechanical wave of acoustic energy that travels through the Earth or another planetary body. It can result from an earthquake (or generally, a quake), volcanic eruption, magma movement, a large landslide and a large man-made explosion that produces low-frequency acoustic energy. Seismic waves are studied by seismologists, who record the waves using seismometers, hydrophones (in water), or accelerometers. Seismic waves are distinguished from seismic noise (ambient vibration), which is persistent low-amplitude vibration arising from a variety of natural and anthropogenic sources.

The propagation velocity of a seismic wave depends on density and elasticity of the medium as well as the type of wave. Velocity tends to increase with depth through Earth's crust and mantle, but drops sharply going from the mantle to Earth's outer core.

View the full Wikipedia page for Seismic wave
↑ Return to Menu

Seismology in the context of Interferometry

Interferometry is a technique which uses the interference of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy (and its applications to chemistry), quantum mechanics, nuclear and particle physics, plasma physics, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms.

Interferometers are devices that extract information from interference. They are widely used in science and industry for the measurement of microscopic displacements, refractive index changes and surface irregularities. In the case with most interferometers, light from a single source is split into two beams that travel in different optical paths, which are then combined again to produce interference; two incoherent sources can also be made to interfere under some circumstances. The resulting interference fringes give information about the difference in optical path lengths. In analytical science, interferometers are used to measure lengths and the shape of optical components with nanometer precision; they are the highest-precision length measuring instruments in existence. In Fourier transform spectroscopy they are used to analyze light containing features of absorption or emission associated with a substance or mixture. An astronomical interferometer consists of two or more separate telescopes that combine their signals, offering a resolution equivalent to that of a telescope of diameter equal to the largest separation between its individual elements.

View the full Wikipedia page for Interferometry
↑ Return to Menu

Seismology in the context of Self-gravitation

Self-gravity is gravitational force exerted by a system, particularly a celestial body or system of bodies, onto itself. At a sufficient mass, this allows the system to hold itself together. The effects of self-gravity have significance in the fields of astronomy, physics, seismology, geology, and oceanography.

The strength of self-gravity differs with regard to the size of an object, and the distribution of its mass. For example, unique gravitational effects are caused by the oceans on Earth or the rings of Saturn.Donald Lynden-Bell, a British theoretical astrophysicist, constructed the equation for calculating the conditions and effects of self gravitation. The equation's main purpose is to give exact descriptions of models for rotating flattened globular clusters. It is also used in understanding how galaxies and their accretion discs interact with each other. Outside of astronomy, self-gravity is relevant to large-scale observations (on or near the scale of planets) in other scientific fields.

View the full Wikipedia page for Self-gravitation
↑ Return to Menu

Seismology in the context of Reflection seismology

Reflection seismology (or seismic reflection) is a method of exploration geophysics that uses the principles of seismology to estimate the properties of the Earth's subsurface from reflected seismic waves. The method requires a controlled seismic source of energy, such as dynamite or Tovex blast, a specialized air gun or a seismic vibrator. Reflection seismology is similar to sonar and echolocation.

View the full Wikipedia page for Reflection seismology
↑ Return to Menu

Seismology in the context of Epicenter

The epicenter (/ˈɛpɪˌsɛntər/), epicentre, or epicentrum in seismology is the point on the Earth's surface directly above a hypocenter or focus, the point where an earthquake or an underground explosion originates.

View the full Wikipedia page for Epicenter
↑ Return to Menu

Seismology in the context of International Geophysical Year

The International Geophysical Year (IGY; French: Année géophysique internationale), also referred to as the third International Polar Year, was an international scientific project that lasted from 1 July 1957 to 31 December 1958. It marked the end of a long period during the Cold War when scientific interchange between East and West had been seriously interrupted. Sixty-seven countries participated in IGY projects, although one notable exception was the mainland People's Republic of China, which was protesting against the participation of the Republic of China (Taiwan). East and West agreed to nominate the Belgian Marcel Nicolet as secretary general of the associated international organization.

The IGY encompassed fourteen Earth science disciplines: aurora, airglow, cosmic rays, geomagnetism, gravity, ionospheric physics, longitude and latitude determinations (precision mapping), meteorology, oceanography, nuclear radiation, glaciology, seismology, rockets and satellites, and solar activity. The timing of the IGY was particularly suited for studying some of these phenomena, since it covered the peak of solar cycle 19.

View the full Wikipedia page for International Geophysical Year
↑ Return to Menu

Seismology in the context of Deep carbon cycle

The deep carbon cycle (or slow carbon cycle) is geochemical cycle (movement) of carbon through the Earth's mantle and core.It forms part of the carbon cycle and is intimately connected to the movement of carbon in the Earth's surface and atmosphere. By returning carbon to the deep Earth, it plays a critical role in maintaining the terrestrial conditions necessary for life to exist. Without it, carbon would accumulate in the atmosphere, reaching extremely high concentrations over long periods of time.

Because the deep Earth is inaccessible to drilling, not much is conclusively known about the role of carbon in it. Nonetheless, several pieces of evidence—many of which come from laboratory simulations of deep Earth conditions—have indicated mechanisms for the element's movement down into the lower mantle, as well as the forms that carbon takes at the extreme temperatures and pressures of this layer. Furthermore, techniques like seismology have led to greater understanding of the potential presence of carbon in the Earth's core. Studies of the composition of basaltic magma and the flux of carbon dioxide out of volcanoes reveals that the amount of carbon in the mantle is greater than that on the Earth's surface by a factor of one thousand.

View the full Wikipedia page for Deep carbon cycle
↑ Return to Menu

Seismology in the context of Conrad discontinuity

The Conrad discontinuity corresponds to the sub-horizontal boundary in the continental crust at which the seismic wave velocity increases in a discontinuous way. This boundary is observed in various continental regions at a depth of 15 to 20  km, but it is not found in oceanic regions.

The Conrad discontinuity (named after the seismologist Victor Conrad) is considered to be the border between the upper continental (sial, for silica-aluminium) crust and the lower one (sima, for silica-magnesium). It is not as pronounced as the Mohorovičić discontinuity and absent in some continental regions. Up to the middle 20th century, the upper crust in continental regions was seen to consist of felsic rocks such as granite (sial), and the lower one to consist of more magnesium-rich mafic rocks like basalt (sima). Therefore, the seismologists of that time considered that the Conrad discontinuity should correspond to a sharply defined contact between the chemically distinct two layers, sial and sima. Despite the fact that sial and sima are two solid layers, the lighter sial is thought to "float" on top of the denser sima layer. This forms the basis of Alfred Wegener's 'Continental Drift Theory.' The area of contact during the movement of the Continental plates is on the Conrad discontinuity.

View the full Wikipedia page for Conrad discontinuity
↑ Return to Menu

Seismology in the context of Hypocenter

A hypocenter or hypocentre (from Ancient Greek ὑπόκεντρον (hupókentron) 'below the center'), also called ground zero or surface zero, is the point on the Earth's surface directly below a nuclear explosion, meteor air burst, or other mid-air explosion. In seismology, the hypocenter of an earthquake is its point of origin below ground; a synonym is the focus of an earthquake.

Generally, the terms ground zero and surface zero are also used in relation to epidemics, and other disasters to mark the point of the most severe damage or destruction. The term is distinguished from the term zero point in that the latter can also be located in the air, underground, or underwater.

View the full Wikipedia page for Hypocenter
↑ Return to Menu

Seismology in the context of Surface wave magnitude

The surface wave magnitude () scale is one of the magnitude scales used in seismology to describe the size of an earthquake. It is based on measurements of Rayleigh surface waves that travel along the uppermost layers of the Earth. This magnitude scale is related to the local magnitude scale proposed by Charles Francis Richter in 1935, with modifications from both Richter and Beno Gutenberg throughout the 1940s and 1950s. It is currently used in People's Republic of China as a national standard (GB 17740-1999) for categorising earthquakes.

Recorded magnitudes of earthquakes through the mid 20th century, commonly attributed to Richter, could be either or .

View the full Wikipedia page for Surface wave magnitude
↑ Return to Menu

Seismology in the context of Lidar

Lidar (/ˈldɑːr/, also LIDAR, an acronym of "light detection and ranging" or "laser imaging, detection, and ranging") is a method for determining ranges by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver. Lidar may operate in a fixed direction (e.g., vertical) or it may scan directions, in a special combination of 3D scanning and laser scanning.

Lidar has terrestrial, airborne, and mobile uses. It is commonly used to make high-resolution maps, with applications in surveying, geodesy, geomatics, archaeology, geography, geology, geomorphology, seismology, forestry, atmospheric physics, laser guidance, airborne laser swathe mapping (ALSM), and laser altimetry. It is used to make digital 3-D representations of areas on the Earth's surface and ocean bottom of the intertidal and near coastal zone by varying the wavelength of light. It has also been increasingly used in control and navigation for autonomous cars and for the helicopter Ingenuity on its record-setting flights over the terrain of Mars. Lidar has since been used extensively for atmospheric research and meteorology. Lidar instruments fitted to aircraft and satellites carry out surveying and mapping – a recent example being the U.S. Geological Survey Experimental Advanced Airborne Research Lidar. NASA has identified lidar as a key technology for enabling autonomous precision safe landing of future robotic and crewed lunar-landing vehicles.

View the full Wikipedia page for Lidar
↑ Return to Menu

Seismology in the context of Shear wave

In seismology and other areas involving elastic waves, S waves, secondary waves, or shear waves (sometimes called elastic S waves) are a type of elastic wave and are one of the two main types of elastic body waves, so named because they move through the body of an object, unlike surface waves.

S waves are transverse waves, meaning that the direction of particle movement of an S wave is perpendicular to the direction of wave propagation, and the main restoring force comes from shear stress. Therefore, S waves cannot propagate in liquids with zero (or very low) viscosity; however, they may propagate in liquids with high viscosity. Similarly, S waves cannot travel through gases.

View the full Wikipedia page for Shear wave
↑ Return to Menu

Seismology in the context of Sensor array

A sensor array is a group of sensors, usually deployed in a certain geometry pattern, used for collecting and processing electromagnetic or acoustic signals. The advantage of using a sensor array over using a single sensor lies in the fact that an array adds new dimensions to the observation, helping to estimate more parameters and improve the estimation performance.For example an array of radio antenna elements used for beamforming can increase antenna gain in the direction of the signal while decreasing the gain in other directions, i.e., increasing signal-to-noise ratio (SNR) by amplifying the signal coherently. Another example of sensor array application is to estimate the direction of arrival of impinging electromagnetic waves. The related processing method is called array signal processing. A third examples includes chemical sensor arrays, which utilize multiple chemical sensors for fingerprint detection in complex mixtures or sensing environments. Application examples of array signal processing include radar/sonar, wireless communications, seismology, machine condition monitoring, astronomical observations fault diagnosis, etc.

Using array signal processing, the temporal and spatial properties (or parameters) of the impinging signals interfered by noise and hidden in the data collected by the sensor array can be estimated and revealed. This is known as parameter estimation.

View the full Wikipedia page for Sensor array
↑ Return to Menu

Seismology in the context of John Michell

John Michell (/ˈmɪəl/; 25 December 1724 – 21 April 1793) was an English natural philosopher and clergyman who provided pioneering insights into a wide range of scientific fields including astronomy, geology, optics, and gravitation. Considered "one of the greatest unsung scientists of all time", he is the first person known to have proposed the existence of stellar bodies comparable to black holes, and the first to have suggested that earthquakes travelled in (seismic) waves. Recognizing that double stars were a product of mutual gravitation, he was the first to apply statistics to the study of the cosmos. He invented an apparatus to measure the mass of the Earth, and explained how to manufacture an artificial magnet. He has been called the father both of seismology and of magnetometry.

According to one science journalist, "a few specifics of Michell's work really do sound like they are ripped from the pages of a twentieth century astronomy textbook." The American Physical Society (APS) described Michell as being "so far ahead of his scientific contemporaries that his ideas languished in obscurity, until they were re-invented more than a century later". The Society stated that while "he was one of the most brilliant and original scientists of his time, Michell remains virtually unknown today, in part because he did little to develop and promote his own path-breaking ideas".

View the full Wikipedia page for John Michell
↑ Return to Menu

Seismology in the context of Strong ground motion

In seismology, strong ground motion is the strong earthquake shaking that occurs close to (less than about 50 km from) a causative fault. The strength of the shaking involved in strong ground motion usually overwhelms a seismometer, forcing the use of accelerographs (or strong ground motion accelerometers) for recording. The science of strong ground motion also deals with the variations of fault rupture, both in total displacement, energy released, and rupture velocity.

As seismic instruments (and accelerometers in particular) become more common, it becomes necessary to correlate expected damage with instrument-readings. The old Modified Mercalli intensity scale (MM), a relic of the pre-instrument days, remains useful in the sense that each intensity-level provides an observable difference in seismic damage.

View the full Wikipedia page for Strong ground motion
↑ Return to Menu

Seismology in the context of Charles Francis Richter

Charles Francis Richter (/ˈrɪktər/; April 26, 1900 – September 30, 1985) was an American seismologist and physicist. He is the namesake and one of the creators of the Richter scale, which, until the development of the moment magnitude scale in 1979, was widely used to quantify the size of earthquakes. Inspired by Kiyoo Wadati's 1928 paper on shallow and deep earthquakes, Richter first used the scale in 1935 after developing it in collaboration with Beno Gutenberg; both worked at the California Institute of Technology.

View the full Wikipedia page for Charles Francis Richter
↑ Return to Menu