Mafic rock in the context of "Conrad discontinuity"

Play Trivia Questions online!

or

Skip to study material about Mafic rock in the context of "Conrad discontinuity"

Ad spacer

⭐ Core Definition: Mafic rock

A mafic mineral or rock is a silicate mineral or igneous rock rich in magnesium and iron. Most mafic minerals are dark in color, and common rock-forming mafic minerals include olivine, pyroxene, amphibole, and biotite. Common mafic rocks include basalt, diabase and gabbro. Mafic rocks often also contain calcium-rich varieties of plagioclase feldspar. Mafic materials can also be described as ferromagnesian.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Mafic rock in the context of Conrad discontinuity

The Conrad discontinuity corresponds to the sub-horizontal boundary in the continental crust at which the seismic wave velocity increases in a discontinuous way. This boundary is observed in various continental regions at a depth of 15 to 20  km, but it is not found in oceanic regions.

The Conrad discontinuity (named after the seismologist Victor Conrad) is considered to be the border between the upper continental (sial, for silica-aluminium) crust and the lower one (sima, for silica-magnesium). It is not as pronounced as the Mohorovičić discontinuity and absent in some continental regions. Up to the middle 20th century, the upper crust in continental regions was seen to consist of felsic rocks such as granite (sial), and the lower one to consist of more magnesium-rich mafic rocks like basalt (sima). Therefore, the seismologists of that time considered that the Conrad discontinuity should correspond to a sharply defined contact between the chemically distinct two layers, sial and sima. Despite the fact that sial and sima are two solid layers, the lighter sial is thought to "float" on top of the denser sima layer. This forms the basis of Alfred Wegener's 'Continental Drift Theory.' The area of contact during the movement of the Continental plates is on the Conrad discontinuity.

↓ Explore More Topics
In this Dossier

Mafic rock in the context of Metamorphism

Metamorphism is the transformation of existing rock (the protolith) to rock with a different mineral composition or texture. Metamorphism takes place at temperatures in excess of 150 °C (300 °F), and often also at elevated pressure or in the presence of chemically active fluids, but the rock remains mostly solid during the transformation. Metamorphism is distinct from weathering or diagenesis, which are changes that take place at or just beneath Earth's surface.

Various forms of metamorphism exist, including regional, contact, hydrothermal, shock, and dynamic metamorphism. These differ in the characteristic temperatures, pressures, and rate at which they take place and in the extent to which reactive fluids are involved. Metamorphism occurring at increasing pressure and temperature conditions is known as prograde metamorphism, while decreasing temperature and pressure characterize retrograde metamorphism.

↑ Return to Menu

Mafic rock in the context of Metamorphic reaction

A metamorphic reaction is a chemical reaction that takes place during the geological process of metamorphism wherein one assemblage of minerals is transformed into a second assemblage which is stable under the new temperature/pressure conditions resulting in the final stable state of the observed metamorphic rock.

Examples include the production of talc under varied metamorphic conditions:

↑ Return to Menu