Secure communication in the context of Shared secret


Secure communication in the context of Shared secret

Secure communication Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Secure communication in the context of "Shared secret"


⭐ Core Definition: Secure communication

Secure communication is when two entities are communicating and do not want a third party to listen in. For this to be the case, the entities need to communicate in a way that is unsusceptible to eavesdropping or interception. Secure communication includes means by which people can share information with varying degrees of certainty that third parties cannot intercept what is said. Other than spoken face-to-face communication with no possible eavesdropper, it is probable that no communication is guaranteed to be secure in this sense, although practical obstacles such as legislation, resources, technical issues (interception and encryption), and the sheer volume of communication serve to limit surveillance.

With many communications taking place over long distance and mediated by technology, and increasing awareness of the importance of interception issues, technology and its compromise are at the heart of this debate. For this reason, this article focuses on communications mediated or intercepted by technology.

↓ Menu
HINT:

👉 Secure communication in the context of Shared secret

In cryptography, a shared secret is a piece of data, known only to the parties involved, in a secure communication. This usually refers to the key of a symmetric cryptosystem. The shared secret can be a PIN code, a password, a passphrase, a big number, or an array of randomly chosen bytes.

The shared secret is either shared beforehand between the communicating parties, in which case it can also be called a pre-shared key, or it is created at the start of the communication session by using a key-agreement protocol, for instance using public-key cryptography such as Diffie–Hellman or using symmetric-key cryptography such as Kerberos.

↓ Explore More Topics
In this Dossier

Secure communication in the context of Cryptography

Cryptography, or cryptology (from Ancient Greek: κρυπτός, romanizedkryptós "hidden, secret"; and γράφειν graphein, "to write", or -λογία -logia, "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security (data confidentiality, data integrity, authentication and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords and military communications.

Cryptography prior to the modern age was effectively synonymous with encryption, converting readable information (plaintext) to unintelligible nonsense text (ciphertext), which can only be read by reversing the process (decryption). The sender of an encrypted (coded) message shares the decryption (decoding) technique only with the intended recipients to preclude access from adversaries. The cryptography literature often uses the names "Alice" (or "A") for the sender, "Bob" (or "B") for the intended recipient, and "Eve" (or "E") for the eavesdropping adversary. Since the development of rotor cipher machines in World War I and the advent of computers in World War II, cryptography methods have become increasingly complex and their applications more varied.

View the full Wikipedia page for Cryptography
↑ Return to Menu