Scientific visualization in the context of Maximum intensity projection


Scientific visualization in the context of Maximum intensity projection

Scientific visualization Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Scientific visualization in the context of "Maximum intensity projection"


⭐ Core Definition: Scientific visualization

Scientific visualization (also spelled scientific visualisation) is an interdisciplinary branch of science concerned with the visualization of scientific phenomena. It is also considered a subset of computer graphics, a branch of computer science. The purpose of scientific visualization is to graphically illustrate scientific data to enable scientists to understand, illustrate, and glean insight from their data. Research into how people read and misread various types of visualizations is helping to determine what types and features of visualizations are most understandable and effective in conveying information.

↓ Menu
HINT:

👉 Scientific visualization in the context of Maximum intensity projection

In scientific visualization, a maximum intensity projection (MIP) is a method for 3D data that projects in the visualization plane the voxels with maximum intensity that fall in the way of parallel rays traced from the viewpoint to the plane of projection. This implies that two MIP renderings from opposite viewpoints are symmetrical images if they are rendered using orthographic projection.

MIP is used for the detection of lung nodules in lung cancer screening programs which use computed tomography scans. MIP enhances the 3D nature of these nodules, making them stand out from pulmonary bronchi and vasculature. MIP imaging is also used routinely by physicians in interpreting Positron Emission Tomography (PET) or Magnetic Resonance Angiography studies.

↓ Explore More Topics
In this Dossier

Scientific visualization in the context of Domain coloring

In complex analysis, domain coloring or a color wheel graph is a technique for visualizing complex functions by assigning a color to each point of the complex plane. By assigning points on the complex plane to different colors and brightness, domain coloring allows for a function from the complex plane to itself, whose graph would normally require four spatial dimensions, to be easily represented and understood. This provides insight to the fluidity of complex functions and shows natural geometric extensions of real functions.

View the full Wikipedia page for Domain coloring
↑ Return to Menu

Scientific visualization in the context of Field line

A field line is a graphical visual aid for visualizing vector fields. It consists of an imaginary integral curve which is tangent to the field vector at each point along its length. A diagram showing a representative set of neighboring field lines is a common way of depicting a vector field in scientific and mathematical literature; this is called a field line diagram. They are used to show electric fields, magnetic fields, and gravitational fields among many other types. In fluid mechanics, field lines showing the velocity field of a fluid flow are called streamlines.

View the full Wikipedia page for Field line
↑ Return to Menu

Scientific visualization in the context of OpenGL

OpenGL (Open Graphics Library) is a cross-language, cross-platform application programming interface (API) for rendering 2D and 3D vector graphics. The API is typically used to interact with a graphics processing unit (GPU), to achieve hardware-accelerated rendering.

Silicon Graphics, Inc. (SGI) began developing OpenGL in 1991 and released it on June 30, 1992. It is used for a variety of applications, including computer-aided design (CAD), video games, scientific visualization, virtual reality, and flight simulation. Since 2006, OpenGL has been managed by the non-profit technology consortium Khronos Group.

View the full Wikipedia page for OpenGL
↑ Return to Menu

Scientific visualization in the context of Data science

Data science is an interdisciplinary academic field that uses statistics, scientific computing, scientific methods, processing, scientific visualization, algorithms and systems to extract or extrapolate knowledge from potentially noisy, structured, or unstructured data.

Data science also integrates domain knowledge from the underlying application domain (e.g., natural sciences, information technology, and medicine). Data science is multifaceted and can be described as a science, a research paradigm, a research method, a discipline, a workflow, and a profession.

View the full Wikipedia page for Data science
↑ Return to Menu

Scientific visualization in the context of Geovisualization

Geovisualization or geovisualisation (short for geographic visualization), also known as cartographic visualization, refers to a set of tools and techniques supporting the analysis of geospatial data through the use of interactive visualization.

Like the related fields of scientific visualization and information visualization geovisualization emphasizes knowledge construction over knowledge storage or information transmission. To do this, geovisualization communicates geospatial information in ways that, when combined with human understanding, allow for data exploration and decision-making processes.

View the full Wikipedia page for Geovisualization
↑ Return to Menu

Scientific visualization in the context of Artistic rendering

Non-photorealistic rendering (NPR) is an area of computer graphics that focuses on enabling a wide variety of expressive styles for digital art, in contrast to traditional computer graphics, which focuses on photorealism. NPR is inspired by other artistic modes such as painting, drawing, technical illustration, and animated cartoons. NPR has appeared in movies and video games in the form of cel-shaded animation (also known as "toon" shading) as well as in scientific visualization, architectural illustration and experimental animation.

View the full Wikipedia page for Artistic rendering
↑ Return to Menu

Scientific visualization in the context of Biological data visualization

Biological data visualization is a branch of bioinformatics concerned with the application of computer graphics, scientific visualization, and information visualization to different areas of the life sciences. This includes visualization of sequences, genomes, alignments, phylogenies, macromolecular structures, systems biology, microscopy, and magnetic resonance imaging data. Software tools used for visualizing biological data range from simple, standalone programs to complex, integrated systems.

An emerging trend is the blurring of boundaries between the visualization of 3D structures at atomic resolution, the visualization of larger complexes by cryo-electron microscopy, and the visualization of the location of proteins and complexes within whole cells and tissues. There has also been an increase in the availability and importance of time-resolved data from systems biology, electron microscopy, and cell and tissue imaging.

View the full Wikipedia page for Biological data visualization
↑ Return to Menu