Saprotroph in the context of "Microfungi"

Play Trivia Questions online!

or

Skip to study material about Saprotroph in the context of "Microfungi"

Ad spacer

⭐ Core Definition: Saprotroph

Saprotrophic nutrition /sæprəˈtrɒfɪk, -pr-/ or lysotrophic nutrition is a process of chemoheterotrophic extracellular digestion involved in the processing of decayed (dead or waste) organic matter. It occurs in saprotrophs (organisms which feed on decaying organic matter), and is most often associated with fungi (e.g. Mucor) and with soil bacteria. Saprotrophic microscopic fungi are sometimes called saprobes. Saprotrophic plants or bacterial flora are called saprophytes (sapro- 'rotten material' + -phyte 'plant'), although it is now believed that all plants previously thought to be saprotrophic are in fact parasites of microscopic fungi or of other plants. In fungi, the saprotrophic process is most often facilitated through the active transport of such materials through endocytosis within the internal mycelium and its constituent hyphae.

Various word roots relating to decayed matter (detritus, sapro-, lyso-), to eating and nutrition (-vore, -phage, -troph), and to plants or life forms (-phyte, -obe) produce various terms, such as detritivore, detritophage, saprotroph, saprophyte, saprophage, and saprobe; their meanings overlap, although technical distinctions (based on physiologic mechanisms) narrow the senses. For example, biologists can make usage distinctions based on macroscopic swallowing of detritus (as in earthworms) versus microscopic lysis of detritus (as with mushrooms).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Saprotroph in the context of Microfungi

Microfungi or micromycetes are fungieukaryotic organisms such as molds, mildews and rusts—which have microscopic spore-producing structures. They exhibit tube tip-growth and have cell walls composed of chitin, a polymer of N-acetylglucosamine. Microfungi are a paraphyletic group, distinguished from macrofungi only by the absence of a large, multicellular fruiting body. They are ubiquitous in all terrestrial and freshwater and marine environments, and grow in plants, soil, water, insects, cattle rumens, hair, and skin. Most of the fungal body consists of microscopic threads, called hyphae, extending through the substrate in which it grows. The mycelia of microfungi produce spores that are carried by the air, spreading the fungus.

Many microfungi species are benign, existing as soil saprotrophs, for example, largely unobserved by humans. Many thousands of microfungal species occur in lichens, forming symbiotic relationships with algae. Other microfungi, such as those of the genera Penicillium, Aspergillus and Neurospora, were first discovered as molds causing spoilage of fruit and bread.

↓ Explore More Topics
In this Dossier

Saprotroph in the context of Hoverfly

Hoverflies, also called flower flies or syrphids, make up the insect family Syrphidae. As their common name suggests, they are often seen hovering or nectaring at flowers; the adults of many species feed mainly on nectar and pollen, while the larvae (maggots) eat a wide range of foods. In some species, the larvae are saprotrophs, specifically detritivores, eating decaying plant and animal matter in the soil or in ponds and streams. In other species, the larvae are insectivores, preying on aphids, thrips, and other plant-sucking insects.

Insects such as aphids are considered crop pests, so the aphid-eating larvae of some hoverflies are economically and ecologically important. The larvae are potential agents for use in biological control, while the adults are pollinators.

↑ Return to Menu

Saprotroph in the context of Aliivibrio fischeri

Aliivibrio fischeri (formerly Vibrio fischeri) is a non-pathogenic, Gram-negative, rod-shaped bacterium found globally in marine environments. This bacterium grows most effectively in water with a salt concentration at around 20g/L, and at temperatures between 24 and 28°C. Free-living A. fischeri cells survive on decaying organic matter. It is heterotrophic, oxidase-positive, and motile by means of a tuft of polar flagella. A. fischeri is found predominantly in symbiosis with various marine animals, such as the Hawaiian bobtail squid. A. fischeri also has bioluminescent properties controlled by the lux operon. The bacterium is a key research organism for examination of bacterial-animal symbiosis, microbial bioluminescence, and quorum sensing. It is named after Bernhard Fischer, a German microbiologist.

Aliivibrio fischeri is in the family Vibrionaceae. This family of bacteria tend to have adaptable metabolisms that can adjust to diverse circumstances. This flexibility may contribute to A. fischeri's ability to survive both alone and in symbiotic relationships.

↑ Return to Menu

Saprotroph in the context of Fusarium oxysporum

Fusarium oxysporum (Schlecht as emended by Snyder and Hansen), an ascomycete fungus, comprises all the species, varieties and forms recognized by Wollenweber and Reinking within an infrageneric grouping called section Elegans. It is part of the family Nectriaceae.

Although their predominant role in native soils may be as harmless or even beneficial plant endophytes or soil saprophytes, many strains within the F. oxysporum complex are soil borne pathogens of plants, especially in agricultural settings.

↑ Return to Menu