SHARAD in the context of Mars Reconnaissance Orbiter


SHARAD in the context of Mars Reconnaissance Orbiter

SHARAD Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about SHARAD in the context of "Mars Reconnaissance Orbiter"


⭐ Core Definition: SHARAD

SHARAD (Mars SHAllow RADar sounder) is a subsurface sounding radar embarked on the Mars Reconnaissance Orbiter (MRO) probe. It complements the MARSIS radar on Mars Express orbiter, providing lower penetration capabilities (some hundred meters) but much finer resolution of 15 meters in free space.

SHARAD was developed under the responsibility of the Italian Space Agency (ASI, Agenzia Spaziale Italiana), and provided to JPL for use on board NASA's Mars Reconnaissance Orbiter spacecraft in the frame of a NASA/ASI agreement which foresees exploitation of the data by a joint Italian/US team. The INFOCOM dept. of the University of Sapienza University of Rome is responsible for the instrument operations, while Thales Alenia Space Italia (formerly Alenia Spazio) designed and built the instruments. SHARAD operations are managed by INFOCOM from the SHARAD Operation Centre (SHOC), located within the Alcatel Alenia Space facilities in the suburbs of Rome.

↓ Menu
HINT:

👉 SHARAD in the context of Mars Reconnaissance Orbiter

The Mars Reconnaissance Orbiter (MRO) is a spacecraft designed to search for the existence of water on Mars and provide support for missions to Mars, as part of NASA's Mars Exploration Program. It was launched from Cape Canaveral on August 12, 2005, at 11:43 UTC and reached Mars on March 10, 2006, at 21:24 UTC. In November 2006, after six months of aerobraking, it entered its final science orbit and began its primary science phase.

Mission objectives include observing the climate of Mars, investigating geologic forces, providing reconnaissance of future landing sites, and relaying data from surface missions back to Earth. To support these objectives, the MRO carries different scientific instruments, including three cameras, two spectrometers and a subsurface radar. As of July 29, 2023, the MRO has returned over 450 terabits of data, helped choose safe landing sites for NASA's Mars landers, discovered pure water ice in new craters and further evidence that water once flowed on the surface on Mars.

↓ Explore More Topics
In this Dossier

SHARAD in the context of Martian polar ice caps

The planet Mars has two permanent polar ice caps of water ice and some dry ice (frozen carbon dioxide, CO2). Above kilometer-thick layers of water ice permafrost, slabs of dry ice are deposited during a pole's winter, lying in continuous darkness, causing 25–30% of the atmosphere being deposited annually at either of the poles. When the poles are again exposed to sunlight, the frozen CO2 sublimes. These seasonal actions transport large amounts of dust and water vapor, giving rise to Earth-like frost and large cirrus clouds.

The caps at both poles consist primarily of water ice. Frozen carbon dioxide accumulates as a comparatively thin layer about one meter thick on the north cap in the northern winter, while the south cap has a permanent dry ice cover about 8 m thick. The northern polar cap has a diameter of about 1000 km during the northern Mars summer, and contains about 1.6 million cubic km of ice, which if spread evenly on the cap would be 2 km thick. (This compares to a volume of 2.85 million cubic km (km) for the Greenland ice sheet.) The southern polar cap has a diameter of 350 km and a thickness of 3 km. The total volume of ice in the south polar cap plus the adjacent layered deposits has also been estimated at 1.6 million cubic km. Both polar caps show spiral troughs, which analysis of SHARAD ice penetrating radar has shown are a result of roughly perpendicular katabatic winds that spiral due to the Coriolis Effect.

View the full Wikipedia page for Martian polar ice caps
↑ Return to Menu